Kazuyuki Kuchitsu

Learn More
Abscisic acid (ABA) regulates vital physiological responses, and a number of events in the ABA signaling cascade remain to be identified. To allow quantitative analysis of genetic signaling mutants, patch-clamp experiments were developed and performed with the previously inaccessible Arabidopsis guard cells from the wild type and ABA-insensitive (abi)(More)
The specification and maintenance of growth sites are tightly regulated during cell morphogenesis in all organisms. ROOT HAIR DEFECTIVE 2 reduced nicotinamide adenine dinucleotide phosphate (RHD2 NADPH) oxidase-derived reactive oxygen species (ROS) stimulate a Ca2+ influx into the cytoplasm that is required for root hair growth in Arabidopsis thaliana. We(More)
Elevations in cytoplasmic calcium ([Ca(2)+](cyt)) are an important component of early abscisic acid (ABA) signal transduction. To determine whether defined mutations in ABA signal transduction affect [Ca(2)+](cyt) signaling, the Ca(2)+-sensitive fluorescent dye fura 2 was loaded into the cytoplasm of Arabidopsis guard cells. Oscillations in [Ca(2)+](cyt)(More)
Pharmacological studies have led to a model in which the phytohormone abscisic acid (ABA) may be positively transduced via protein phosphatases of the type 1 (PP1) or type 2A (PP2A) families. However, pharmacological evidence also exists that PP1s or PP2As may function as negative regulators of ABA signaling. Furthermore, recessive disruption mutants in(More)
Plant respiratory burst oxidase homolog (rboh) proteins, which are homologous to the mammalian 91-kDa glycoprotein subunit of the phagocyte oxidase (gp91(phox)) or NADPH oxidase 2 (NOX2), have been implicated in the production of reactive oxygen species (ROS) both in stress responses and during development. Unlike mammalian gp91(phox)/NOX2 protein, plant(More)
Stimulus-specific accumulation of second messengers like reactive oxygen species (ROS) and Ca(2+) are central to many signaling and regulation processes in plants. However, mechanisms that govern the reciprocal interrelation of Ca(2+) and ROS signaling are only beginning to emerge. NADPH oxidases of the respiratory burst oxidase homolog (RBOH) family are(More)
By using subtracted probes, two cDNA clones of rice, EL2 and EL3, were isolated as genes responsive within 6 min to N-acetylchitoheptaose, a potent biotic elicitor for phytoalexin biosynthesis. Analyses of the sequence of the cDNAs showed that both of EL2 and EL3 encoded basic proteins with no significant similarities to those of known genes.
Mechanical stimuli generate Ca(2+) signals and influence growth and development in plants. Recently, candidates for Ca(2+)-permeable mechanosensitive (MS) channels have been identified. These channels are thought to be responsible for sensing osmotic shock, touch, and gravity. One candidate is the MscS-like (MSL) protein family, a homolog of the typical(More)
The plant NADPH oxidases, known as respiratory burst oxidase homologues (Rbohs), play an indispensable role in a wide array of cellular and developmental processes. Arabidopsis thaliana RbohF (AtRbohF)-mediated production of reactive oxygen species (ROS) is involved in biotic and abiotic stress responses. Because of the toxicity of excess amount of ROS, the(More)
Mechanosensing and its downstream responses are speculated to involve sensory complexes containing Ca2+-permeable mechanosensitive channels. On recognizing osmotic signals, plant cells initiate activation of a widespread signal transduction network that induces second messengers and triggers inducible defense responses. Characteristic early signaling events(More)