Kazuyoshi Ukena

Learn More
The neuropeptide control of gonadotropin secretion at the level of the anterior pituitary gland is primarily through the stimulatory action of the hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), which was originally isolated from mammals and subsequently from non-mammals. To date, however, an inhibitory peptide of gonadotropin release is(More)
We recently identified a novel hypothalamic dodecapeptide inhibiting gonadotropin release in the Japanese quail (Coturnix japonica). This novel peptide was therefore named gonadotropin-inhibitory hormone (GnIH). The GnIH precursor encoded one GnIH and two GnIH-related peptides (GnIH-RP-1 and GnIH-RP-2) that shared the same C-terminal motif,(More)
The neuropeptide control of gonadotropin secretion is primarily through the stimulatory action of the hypothalamic decapeptide, GnRH. We recently identified a novel hypothalamic dodecapeptide with a C-terminal LeuPro-Leu-Arg-Phe-NH2 sequence in the domestic bird, Japanese quail (Coturnix japonica). This novel peptide inhibited gonadotropin release in vitro(More)
Successful reproduction requires maintenance of the reproductive axis within fine operating limits through negative feedback actions of sex steroids. Despite the importance of this homeostatic process, our understanding of the neural loci, pathways, and neurochemicals responsible remain incomplete. Here, we reveal a neuropeptidergic pathway that directly(More)
Gonadotropin-releasing hormone (GnRH) regulates reproduction in all vertebrates. Until recently, an antagonistic neuropeptide for gonadotropin was unknown. The discovery of an RFamide peptide in quail that inhibits gonadotropin release in vitro raised the possibility of direct hypothalamic inhibition of gonadotropin release. This peptide has now been named(More)
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds and mammals. To further understand its physiological roles in mammalian reproduction, we identified its precursor cDNA and endogenous mature peptides in the Siberian hamster brain. The Siberian hamster GnIH precursor cDNA encoded two(More)
We previously isolated a novel dodecapeptide containing a C-terminal -Arg-Phe-NH(2) sequence, SIKPSAYLPLRF-NH(2) (RFamide peptide), from the quail brain. This quail RFamide peptide was shown to decrease gonadotropin release from the cultured anterior pituitary and to be located at least in the quail hypothalamo-hypophysial system. We therefore designated(More)
Studies performed in vitro suggest that a novel 12 amino acid RF amide peptide, isolated from the quail hypothalamus, is a gonadotrophin inhibitory hormone (GnIH). The aim of the present study was to investigate this hypothesis in the domestic chicken. Injections of GnIH into nest-deprived incubating hens failed to depress the concentration of plasma(More)
Little information is available for neurosteroidogenesis in the central nervous system (CNS) of lower vertebrates. Therefore, in the present study, we examined the enzymatic activity and localization of 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4-isomerase (3betaHSD), a key steroidogenic enzyme, in the CNS of adult male zebrafish to clarify central(More)
In mammals, neurosteroids are now known to be synthesized de novo in the brain as well as other areas of the nervous system through mechanisms at least partly independent of the peripheral steroidogenic glands. However, limited information is available on neurosteroids in non-mammalian vertebrates. We therefore have attempted to demonstrate neurosteroid(More)