Kazuyoshi Tadokoro

Learn More
OBJECT This study was designed to examine whether natriuretic peptide/natriuretic peptide receptor-A (NPR-A) system attenuates renal fibrosis in a unilateral ureteral obstruction (UUO) model and also examined the mechanism involved. METHODS Three groups were studied: untreated UUO in wild-type mice; untreated UUO in NPR-A KO mice; and ANP treated (0.05(More)
The present study was designed to examine whether chronic adrenomedullin infusion has renoprotective effects in hypertensive renal failure and the mechanism by which chronic adrenomedullin infusion exerts its effects. Dahl salt-sensitive rats and Dahl salt-resistant rats were fed a high salt diet starting at 6 weeks of age. Recombinant human adrenomedullin(More)
To investigate the pathophysiological role of adrenomedullin (AM) in left ventricular hypertrophy (LVH) in hypertension, we measured the plasma level, left ventricle (LV) tissue level, and mRNA abundance of AM and the mRNA abundance of the AM receptor system in the LV. We also analyzed the molecular forms of AM in the plasma and LV tissue and investigated(More)
There are two phenotypically distinct subpopulations of mast cells in rodents: connective tissue-type mast cells (CTMC) and mucosal mast cells (MMC). These populations differ in their location, cell size, staining characteristics, ultrastructure, mediator content and T-cell dependency. Several investigators recently reported a further subclass of mast cells(More)
We investigated whether adrenomedullin (AM) participates in the pathophysiology during the transition from left ventricular hypertrophy (LVH) to heart failure (HF). We used the Dahl salt-sensitive (DS) rat model, in which systemic hypertension causes LVH at the age of 11 weeks, followed by HF at the age of 18 weeks. Two molecular forms of AM levels in the(More)
Acute administration of adrenomedullin (AM) exerts beneficial hemodynamic, renal, and neurohormonal effects in heart failure (HF). However, chronic effects of AM administration on HF remain unknown. This study sought to examine the effect of chronic infusion of AM on progression of HF in rat. Human recombinant AM was administered by osmotic minipump for 7(More)
OBJECTIVE We investigated the pathophysiological role of the renal adrenomedullin (AM) system, including the ligand, receptor, and amidating activity, in severe hypertensive rats. METHOD We studied three groups: control Wistar Kyoto rats (WKY), spontaneously hypertensive stroke-prone rats (SHR-SP), and diuretic-treated SHR-SP. We measured AM-mature,(More)
  • 1