Learn More
Subcellular organelles in living cells were inactivated by tightly focusing femtosecond laser pulses inside the cells. Photodisruption of a mitochondrion in living cells was experimentally confirmed by stacking three-dimensional confocal images and by restaining of organelles. The viability of the cells after femtosecond laser irradiation was ascertained by(More)
We theoretically show that the shot-noise-limited sensitivity of stimulated Raman scattering (SRS) microscopy, which enables high-contrast vibrational imaging, is similar to that of coherent anti-Stokes Raman scattering microscopy. We experimentally confirm that the sensitivity of our SRS microscope is lower than the shot-noise limit only by <15 dB, which(More)
Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling(More)
We report on laser micro-welding of materials based on a localized heat accumulation effect using an amplified femtosecond Er-fiber laser with a wavelength of 1558 nm and a repetition rate of 500 kHz. We demonstrated the welding of non-alkali alumino silicate glass substrates, resulting in a joint strength of 9.87 MPa. We also welded a non-alkali glass(More)
Femtosecond laser pulses can be used to selectively disrupt and dissect intracellular organelles. We report on disruption of mitochondria in living HeLa cells using a femtosecond laser oscillator with a repetition rate of 76 MHz. We studied the laser parameters used for disruption. The longterm viability of the cells after disruption of a single(More)
We propose and demonstrate an optical coding scheme using optical interconnection for a photonic analog-to-digital conversion. It allows us to convert a multi-power level signal into a multiple-bit binary code so as to detect it in a bit-parallel format by binary photodiode array. The proposed optical coding is executed after optical quantization using(More)
We propose and demonstrate the use of subharmonically synchronized laser pulses for low-noise lock-in detection in stimulated Raman scattering (SRS) microscopy. In the experiment, Yb-fiber laser pulses at a repetition rate of 38 MHz are successfully synchronized to Ti:sapphire laser pulses at a repetition rate of 76 MHz with a jitter of <8 fs by a(More)
We demonstrate a technique of hyperspectral imaging in stimulated Raman scattering (SRS) microscopy using a tunable optical filter, whose transmission wavelength can be varied quickly by a galvanometer mirror. Experimentally, broadband Yb fiber laser pulses are synchronized with picosecond Ti:sapphire pulses, and then spectrally filtered out by the filter.(More)