Kazuya Shimizu

Learn More
Nectins, Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules, induce the activation of Cdc42 and Rac small G proteins, enhancing the formation of cadherin-based adherens junctions (AJs) and claudin-based tight junctions. Nectins recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then activates Cdc42 through FRG, a(More)
Nectins are a family of Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules consisting of four members, which homophilically and heterophilically trans-interact and cause cell-cell adhesion. Nectin-based cell-cell adhesion is involved in the formation of cadherin-based adherens junctions in epithelial cells and fibroblasts. The nectin-based(More)
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that form homo- and hetero-trans-dimers (trans-interactions). Nectins first form cell-cell contact and then recruit cadherins to the nectin-based cell-cell contact sites to form adherens junctions cooperatively with cadherins. In addition, the trans-interactions of nectins induce(More)
Nectins, Ca2+ -independent immunoglobulin-like cell-cell adhesion molecules, initiate cell-cell adhesion by their trans interactions and recruit cadherins to cooperatively form adherens junctions (AJs). In addition, the trans interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which increases the velocity of the formation of(More)
Cell-cell adhesion plays key roles in tissue morphogenesis and organogenesis. Nectins are Ca2+-independent immunoglobulin-like cell adhesion molecules connected to the actin cytoskeleton through afadin. Nectins play roles in a variety of cell-cell junctions in cooperation with or independently of cadherins. Here, we examined the cellular localization of(More)
BACKGROUND Intratumoral hypoxia is known to lead to increased aggressiveness and distant metastasis. However, the interplay underlying these actions is still unknown. OBJECTIVE We explored whether cancer cells might acquire a stem-like phenotype under hypoxia, consequently leading to an aggressive phenotype, including invasiveness and metastasis. (More)
BACKGROUND In polarized epithelial cells, cell-cell adhesion forms specialized membrane structures comprised of claudin-based tight junctions (TJs) and of E-cadherin-based adherens junctions (AJs). These structures are aligned from the apical to the basal side of the lateral membrane, but the mechanism of this organization remains unknown. Nectin is a Ca2+(More)
Nectins and afadin constitute a novel cell-cell adhesion system that plays a cooperative role with cadherins in the organization of adherens junctions (AJs). Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules, and afadin is a nectin- and actin filament-binding protein that connects nectins to the actin cytoskeleton. Rac and(More)
Nectins are Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules (CAMs), which comprise a family consisting of four members. Each nectin homophilically and heterophilically trans-interacts and causes cell-cell adhesion. Biochemical, cell biological, and knockout mice studies have revealed that nectins play important roles in formation of(More)
Nectins, Ca2+-independent immunoglobulin-like cell-cell adhesion molecules, trans-interact and form cell-cell adhesion, which increases the velocities of the formation of the E-cadherin-based adherens junctions (AJs) and the claudin-based tight junctions (TJs) in Madin-Darby canine kidney (MDCK) cells. The trans-interactions of nectins furthermore induce(More)