Kazuto Arakawa

Learn More
Vacancy-mediated climb models cannot account for the fast, direct coalescence of dislocation loops seen experimentally. An alternative mechanism, self climb, allows prismatic dislocation loops to move away from their glide surface via pipe diffusion around the loop perimeter, independent of any vacancy atmosphere. Despite the known importance of self climb,(More)
The dynamic behaviour of atomic-size disarrangements of atoms-point defects (self-interstitial atoms (SIAs) and vacancies)-often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and(More)
  • 1