Kazutaka Murayama

Learn More
Recent advances have fundamentally changed the ways in which synthetic amino acids are incorporated into proteins, enabling their efficient and multiple-site incorporation, in addition to the 20 canonical amino acids. This development provides opportunities for fresh approaches toward addressing fundamental problems in bioengineering. In the present study,(More)
To obtain an ethanolamine plasmalogen (PlsEtn)-hydrolyzing enzyme and to develop an assay that would help determine PlsEtn concentrations in human serum as an indicator of Alzheimer-type dementia and of arteriosclerosis. Phospholipase A1s, SaPLA1 and SvPLA1 from, respectively, Streptomyces albidoflavus NA297 and S. avermitilis JCM5070—but not phospholipase(More)
Our screening study yielded a copper amine oxidase (SrAOX) from Syncephalastrum racemosum, which showed much higher affinity and catalytic efficiency toward ethanolamine (EA) than any other amine oxidase (AOX). Following purification of the enzyme to electrophoretic homogeneity from a cell-free extract, the maximum activity toward EA was detected at pH(More)
Lysoplasmalogen (LyPls)-specific phospholipase D (LyPls-PLD) is an enzyme that catalyses the hydrolytic cleavage of the phosphoester bond of LyPls, releasing ethanolamine or choline, and 1-(1-alkenyl)-sn-glycero-3-phosphate (lysoplasmenic acid). Little is known about LyPls-PLD and metabolic pathways of plasmalogen (Pls). Reportedly, Pls levels in human(More)
Islet transplantation is a prospective treatment for restoring normoglycemia in patients with type 1 diabetes. Islet isolation from pancreases by decomposition with proteolytic enzymes is necessary for transplantation. Two collagenases, collagenase class I (ColG) and collagenase class II (ColH), from Clostridium histolyticum have been used for islet(More)
  • 1