Learn More
A novel shape-adjustable narrowband optical filter utilizing stimulated Brillouin scattering in an optical fiber is proposed and demonstrated. In this scheme, binary-phase-shift-keying modulation is applied to the pump wave to broaden and shape the Brillouin gain spectrum. By choosing an appropriate modulation data pattern, we realized a flat-top(More)
We demonstrate unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using a digital coherent receiver, where the decision-directed carrier-phase estimation is employed. The phase fluctuation is effectively eliminated in the 16-QAM system with such a phase-estimation method, when the linewidth of semiconductor lasers for the transmitter and the local(More)
We propose a novel frequency-domain adaptive equalizer in digital coherent optical receivers, which can reduce computational complexity of the conventional time-domain adaptive equalizer based on finite-impulse-response (FIR) filters. The proposed equalizer can operate on the input sequence sampled by free-running analog-to-digital converters (ADCs) at the(More)
We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error(More)
We develop a systematic method for characterizing semiconductor-laser phase noise, using a low-speed offline digital coherent receiver. The field spectrum, the FM-noise spectrum, and the phase-error variance measured with such a receiver can completely describe phase-noise characteristics of lasers under test. The sampling rate of the digital coherent(More)
We design single-wall carbon nanotube (SWNT) thin-film saturable absorbers (SAs) integrated onto semiconductor distributed Bragg reflectors for mode-locking solid-state Er:Yb:glass lasers. We characterize the low nonsaturable loss, high-damage-threshold SWNT SAs and verify their operation up to a pulse fluence of 2 mJ/cm(2). We demonstrate passive(More)
We propose a novel configuration of the finite-impulse-response (FIR) filter adapted by the phase-dependent decision-directed least-mean-square (DD-LMS) algorithm in digital coherent optical receivers. Since fast carrier-phase fluctuations are removed from the error signal which updates tap coefficients of the FIR filter, we can achieve stable adaptation of(More)
We introduce a new figure of merit (FOM) including the input pump power limit associated with stimulated Brillouin scattering (SBS) for evaluation of the Kerr nonlinearity efficiency of optical fibers. The new FOM is expressed as gammaL(eff)P(SBS) (gamma is a nonlinearity parameter, L(eff) is effective length, and P(SBS) is the SBS threshold), while the(More)