Learn More
Induced overexpression of AID in CH12F3-2 B lymphoma cells augmented class switching from IgM to IgA without cytokine stimulation. AID deficiency caused a complete defect in class switching and showed a hyper-IgM phenotype with enlarged germinal centers containing strongly activated B cells before or after immunization. AID-/- spleen cells stimulated in(More)
The activation-induced cytidine deaminase (AID) gene, specifically expressed in germinal center B cells in mice, is a member of the cytidine deaminase family. We herein report mutations in the human counterpart of AID in patients with the autosomal recessive form of hyper-IgM syndrome (HIGM2). Three major abnormalities characterize AID deficiency: (1) the(More)
Activation-induced cytidine deaminase (AID), a putative RNA-editing enzyme, is indispensable for somatic hypermutation (SHM), class switch recombination, and gene conversion of immunoglobulin genes, which indicates a common molecular mechanism for these phenomena. Here we show that ectopic expression of AID alone can induce hypermutation in an artificial(More)
The switch of the immunoglobulin isotype from IgM to IgG, IgE or IgA is mediated by class switch recombination (CSR). CSR changes the immunoglobulin heavy chain constant region (CH) gene from Cmu to one of the other CH genes. Somatic hypermutation introduces massive numbers of point mutations in the immunoglobulin variable (V) region gene, giving rise to(More)
The immune system has adopted somatic DNA alterations to overcome the limitations of the genomic information. Activation induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM) and gene conversion (GC) of the immunoglobulin gene. AID is known to be required for DNA cleavage of S(More)
Genome stability is regulated by the balance between efficiencies of the repair machinery and genetic alterations such as mutations and chromosomal rearrangements. It has been postulated that deregulation of class switch recombination (CSR) and somatic hypermutation (SHM), which modify the immunoglobulin (Ig) genes in activated B cells, may be responsible(More)
Somatic hypermutation (SHM) and class switch recombination (CSR) cause distinct genetic alterations at different regions of immunoglobulin genes in B lymphocytes: point mutations in variable regions and large deletions in S regions, respectively. Yet both depend on activation-induced deaminase (AID), the function of which in the two reactions has been an(More)
Activation-induced cytidine deaminase (AID) is required for the DNA cleavage step in immunoglobulin class switch recombination (CSR). AID is proposed to deaminate cytosine to generate uracil (U) in either mRNA or DNA. In the second instance, DNA cleavage depends on uracil DNA glycosylase (UNG) for removal of U. Using phosphorylated histone gamma-H2AX focus(More)
The activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) and class-switch recombination (CSR) of immunoglobulin (Ig) genes, both of which are associated with DNA double-strand breaks (DSBs). As AID is capable of deaminating deoxy-cytidine (dC) to deoxy-uracil (dU), it might induce nicks (single strand DNA breaks) and also(More)
The isotype specificity of immunoglobulin (Ig) class switching is regulated by a cytokine which induces transcription of a specific switch (S) region, giving rise to so-called germline transcripts. Although previous studies have demonstrated that germline transcription of an S region is required for class switch recombination (CSR) of that particular S(More)