Learn More
Epithelial cells possess apical-basolateral polarity and form tight junctions (TJs) at the apical-lateral border, separating apical and basolateral membrane domains. The PAR3-aPKC-PAR6 complex plays a central role in TJ formation and apical domain development during tissue morphogenesis. Inactivation and overactivation of aPKC kinase activity disrupts(More)
Fusarium oxysporum f. sp. cepae causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of F. oxysporum f. sp. cepae is very limited. In this study, F. oxysporum f. sp. cepae was isolated from onion and(More)
Fusarium oxysporum f. sp. cepae (FOC) isolated from onion basal rot possessed a SIX3 homolog (FocSIX3) with 91.4 % identity to the SIX3 gene (FolSIX3) of F. oxysporum f. sp. lycopersici (FOL). A primer pair (P1) was designed to detect onion FOC based on differences in nucleotide sequences between FocSIX3 and FolSIX3. P1 amplified a 106-bp-long DNA segment(More)
Atypical protein kinase C λ/ι (aPKCλ/ι) is a regulator of epithelial cellular polarity. It is also overexpressed in several cancers and functions in cell proliferation and invasion. Therefore, we hypothesized that aPKCλ/ι may be involved in development and progression of cervical intraepithelial neoplasia (CIN), the precancerous disease of cervical cancer(More)
The evolutionarily conserved polarity proteins PAR-3, atypical protein kinase C (aPKC) and PAR-6 critically regulate the apical membrane development required for epithelial organ development. However, the molecular mechanisms underlying their roles remain to be clarified. We demonstrate that PAR-3 knockdown in MDCK cells retards apical protein delivery to(More)
Rosmarinus officinalis (R. officinalis), a culinary aromatic and medicinal plant, is very rich in polyphenols and flavonoids with high antioxidant properties. This plant was reported to exert multiple benefits for neuronal system and alleviate mood disorder. In our previous study, we demonstrated that R. officinalis and its active compounds, luteolin (Lut),(More)
Metabolomics is an emerging technology that reveals homeostatic imbalances in biological systems. Global determination of metabolite concentrations in body fluid and tissues provides novel anatomical aspects of pathological conditions that cannot be obtained from target-specific measurements. Here, we characterised metabolic imbalance in Watanabe heritable(More)
Epithelial apicobasal polarity has fundamental roles in epithelial physiology and morphogenesis. The PAR complex, comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC), is involved in determining cell polarity in various biological contexts, including in epithelial cells. However, it is not fully understood how the PAR complex induces apicobasal(More)
Cellular slime molds are fascinating to the field of developmental biology, and have long been used as excellent model organisms for the study of various aspects of multicellular development. We have recently isolated alpha-pyronoids, named dictyopyrones A-D (1-4), from various species of Dictyostelium cellular slime molds, and it was shown that compound 3(More)
Atypical protein kinase C λ/ι (aPKCλ/ι) and interleukin-6 (IL-6) have been implicated in prostate cancer progression, the mechanisms of which have been demonstrated both in vitro and in vivo. However, the clinical significance of the correlation between the expressions of these factors remains to be clarified. In the present study, we report a significant(More)