Learn More
The hypothalamic melanocortin system is crucial for the control of appetite and body weight. Two of the five melanocortin receptors, MC3R and MC4R are involved in hypothalamic control of energy homeostasis, with the MC4R having the major influence. It is generally thought that the main impact of the melanocortin system on hypothalamic circuits is external(More)
Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in beta cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and beta cell. RIPCreIrs2KO mice displayed impaired(More)
OBJECTIVE Glucagon-like peptide (GLP)-1 inhibits food intake, acting both in the periphery and within the central nervous system. It is unclear if gut-derived GLP-1 can enter the brain, or whether GLP-1 from preproglucagon (PPG) cells in the lower brainstem is required to activate central GLP-1 receptors. Brainstem PPG neurons, however, have been poorly(More)
OBJECTIVE Glucagon-like peptide 1 (GLP-1) is involved in the central regulation of food intake. It is produced within the brain by preproglucagon (PPG) neurons, which are located primarily within the brain stem. These neurons project widely throughout the brain, including to the appetite centers in the hypothalamus, and are believed to convey signals(More)
Mechanical stress induces auto/paracrine ATP release from various cell types, but the mechanisms underlying this release are not well understood. Here we show that the release of ATP induced by hypotonic stress (HTS) in bovine aortic endothelial cells (BAECs) occurs through volume-regulated anion channels (VRAC). Various VRAC inhibitors, such as(More)
Glucagon-like peptide 1(GLP-1) is both an incretin released postprandially from the gut and a neuropeptide produced by select brainstem neurons. Its principal role is in the control of metabolic and cardiovascular functions, acting both in the periphery and within the central nervous system (CNS). Specifically, GLP-1 functions that involve the CNS include(More)
OBJECTIVE—Glucagon-like peptide 1 (GLP-1) is involved in the central regulation of food intake. It is produced within the brain by preproglucagon (PPG) neurons, which are located primarily within the brain stem. These neurons project widely throughout the brain, including to the appetite centers in the hypothalamus, and are believed to convey signals(More)
A number of anti-obesity agents have been developed that enhance hypothalamic 5-HT transmission. Various studies have demonstrated that arcuate neurons, which express proopiomelanocortin peptides (POMC neurons), and neuropeptide Y with agouti-related protein (NPY/AgRP) neurons, are components of the hypothalamic circuits responsible for energy homeostasis.(More)
To evaluate relative factors for anorectic effects of l-histidine, we performed behavioral experiments for measuring food and fluid intake, conditioned taste aversion (CTA), taste disturbance, and c-Fos immunoreactive (Fos-ir) cells before and after i.p. injection with l-histidine in rats. Animals were injected with saline (9 ml/kg, i.p.) for a control(More)
Sophisticated tongue movements are coordinated finely via cortical control. We elucidated the cortical processes associated with voluntary tongue movement. Movement-related cortical fields were investigated during self-paced repetitive tongue protrusion. Surface tongue electromyograms were recorded to determine movement onset. To identify the location of(More)
  • 1