Kazumichi Obuchi

Learn More
The contribution of trehalose and hsp104 to membrane fluidity and the mobility of non-freezing cell water were examined on the basis of whole cell NMR analysis of the yeast Saccharomyces cerevisiae. Membrane fluidity was dependent on the accumulation of trehalose not hsp104 and non-freezing cell water was dependent on the accumulation of hsp104 not(More)
The contribution of trehalose and hsp104 to barotolerance in Saccharomyces cerevisiae has been investigated. Mutant strains, which lacked the ability to accumulate trehalose and/or hsp104, were examined for barotolerance and thermotolerance. All the mutants showed lower barotolerance and thermotolerance than their control strains. Trehalose had a greater(More)
Deuterium oxide, dimethylsulfoxide (Me2SO) and heat shock treatment were all significantly effective at baro-injury as measured by plating efficiency after decompression. The content of unfreezable cell water was observed to increase during heat treatment, and this increase was associated with increase in viability.
In yeast, trehalose accumulation and its hydrolysis, which is catalyzed by neutral trehalase, are believed to be important for thermotolerance. We have shown that trehalose is one of the important factors for barotolerance (resistance to hydrostatic pressure); however, nothing is known about the role of neutral trehalase in barotolerance. To estimate the(More)
Disruption of the HSP104 gene in a mutant which cannot accumulate trehalose during heat shock treatment caused trehalose accumulation (H. Iwahashi, K. Obuchi, S. Fujii, and Y. Komatsu, Lett. Appl. Microbiol 25:43-47, 1997). This implies that Hsp104 affects trehalose metabolism. Thus, we measured the activities of enzymes involved in trehalose metabolism.(More)
In Saccharomyces cerevisiae, heat shock treatment provides protection against subsequent hydrostatic pressure damage. Such an induced hydrostatic pressure resistance (barotolerance) closely resembles the thermotolerance similarly induced by heat shock treatment. The parallel induction of barotolerance and thermotolerance by heat shock suggests that(More)
Saccharomyces cerevisiae cells exposed to 43 degrees C (normal being 30 degrees C) exhibit the synthesis of heat shock proteins (hsps). Time course studies indicated that the major hsps (97 kDa, 85 kDa and 70 kDa family) are induced within 10 min. of heat shock and attain maximum amount with two hours of treatment. The viability of cells decreased by 99%(More)
A comparison of barotolerance, thermotolerance and oxygen tolerance was made under different physiological conditions, such as heat shocked and recovered state, different growth phases and changes of physiological conditions by mutations. The three kinds of tolerance showed similar features under different physiological conditions. We suggest that the(More)
We have studied the effect of temperature on the contribution of Hsp104 and trehalose to barotolerance using mutants deficient in Hsp104 and trehalose synthesis. When compared with a corresponding wild type strain, mutants of Hsp104 did not show temperature dependent barotolerance when the incubation temperature during the hydrostatic pressure treatment was(More)
Several saccharides were found to be significantly effective in providing protection against hydrostatic pressure and high temperature damage in the yeast Saccharomyces cerevisiae. The extent of barotolerance and thermotolerance with seven different sugars showed a linear relationship to their mean number of equatorial OH groups. The same linear(More)