Kazukuni Tahara

Learn More
The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been scrutinized by scanning tunneling microscopy (STM) at the liquid-solid interface. First, the influence of core symmetry on the network structure was investigated by comparing the two-dimensional (2D) ordering of rhombic bisDBA 1a and triangular DBA 2a (Figure 1).(More)
The geometries of multiply fused dehydrobenzo[12]annulenes [12]DBAs 2-7 with various topologies, which are considered as graphyne fragments, have been optimized at the B3LYP/6-31G* level of theory. Most of the optimized geometries of fused DBAs have planar structures excluding a boomerang-shaped bisDBA 4, a trefoil-shaped trisDBA 6, and a wheel-shaped DBA(More)
Recognition and selection are of fundamental importance for the hierarchical assembly of supramolecular systems. Coronene induces the formation of a hydrogen-bonded isophthalic acid supramolecular macrocycle, and this well-defined heterocluster forces, in its turn, DBA1 to form a van der Waals stabilized honeycomb lattice, leading to a three-component 2D(More)
Homochirality is essential to many biological systems, and plays a pivotal role in various technological applications. The generation of homochirality and an understanding of its mechanism from the single-molecule to supramolecular level have received much attention. Two-dimensional chirality is a subject of intense interest due to the unique possibilities(More)
The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface in the absence and presence of nanographene guests. In the absence of appropriate guest molecules, DBA derivatives with short alkoxy chains form two-dimensional (2D) porous honeycomb(More)
Induction of chirality in achiral monolayers has garnered considerable attention in the recent past not only due to its importance in chiral resolutions and enantioselective heterogeneous catalysis but also because of its relevance to the origin of homochirality in life. In this contribution, we demonstrate the emergence of macroscopic chirality in(More)
[structure: see text] Depending on the exact length of the tube, the chemical structure of finite-length armchair [n,n] single-wall carbon nanotube (n = 5 and 6) falls into three different classes that may be referred to as Kekulé, incomplete Clar, and complete Clar networks. The C-C bond lengths, nucleus-independent chemical shift analysis, and orbital(More)