Kazuko Koshiba-Takeuchi

Learn More
HtrA1, a member of the mammalian HtrA serine protease family, has a highly conserved protease domain followed by a PDZ domain. Because HtrA1 is a secretory protein and has another functional domain with homology to follistatin, we examined whether HtrA1 functions as an antagonist of Tgfbeta family proteins. During embryo development, mouse HtrA1 was(More)
Much progress has been made in understanding limb development. Most genes are expressed equally and in the same pattern in the fore- and hindlimbs, which nevertheless develop into distinct structures. The T-box genes Tbx5 and Tbx4, on the other hand, are expressed differently in chick wing (Tbx5) and leg (Tbx4) buds. Molecular analysis of the optomotor(More)
Despite extensive studies on the anterior-posterior (AP) axis formation of limb buds, mechanisms that specify digit identities along the AP axis remain obscure. Using the four-digit chick leg as a model, we report here that Tbx2 and Tbx3 specify the digit identities of digits IV and III, respectively. Misexpression of Tbx2 and Tbx3 induced posterior(More)
Dorsal and ventral aspects of the eye are distinct from the early stages of development. The developing eye cup grows dorsally, and the choroidal fissure is formed on its ventral side. Retinal axons from the dorsal and ventral retina project to the ventral and dorsal tectum, respectively. Misexpression of the Tbx5 gene induced dorsalization of the ventral(More)
Dominant mutations in the T-box transcription factor gene TBX5 cause Holt-Oram syndrome (HOS), an inherited human disease characterized by upper limb malformations and congenital heart defects (CHDs) of variable severity. We hypothesize that minor alterations in the dosage of Tbx5 directly influences severity of CHDs. Using a mouse allelic series, we show a(More)
Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor 'fields' has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells(More)
A tight loop between members of the fibroblast growth factor and the Wnt families plays a key role in the initiation of vertebrate limb development. We show for the first time that Tbx5 and Tbx4 are directly involved in this process. When dominant-negative forms of these Tbx genes were misexpressed in the chick prospective limb fields, a limbless phenotype(More)
To elucidate the function of the T-box transcription factor Tbx20 in mammalian development, we generated a graded loss-of-function series by transgenic RNA interference in entirely embryonic stem cell-derived mouse embryos. Complete Tbx20 knockdown resulted in defects in heart formation, including hypoplasia of the outflow tract and right ventricle, which(More)
The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy. However, the evolution of the(More)
Human mutations in TBX5, a gene encoding a T-box transcription factor, and SALL4, a gene encoding a zinc-finger transcription factor, cause similar upper limb and heart defects. Here we show that Tbx5 regulates Sall4 expression in the developing mouse forelimb and heart; mice heterozygous for a gene trap allele of Sall4 show limb and heart defects that(More)