Learn More
Two antioxidant proteins, SLL1621 and SLR1198, were captured in the cyanobacteria Synechocystis sp. PCC 6803 using thioredoxin affinity chromatography, which was first applied to the survey of thioredoxin target proteins in chloroplasts (Motohashi, K., Kondoh, A., Stumpp, M. T., and Hisabori, T. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 11224-11229). They(More)
Cyanobacteria use sunlight and water to produce hydrogen gas (H₂), which is potentially useful as a clean and renewable biofuel. Photobiological H₂ arises primarily as an inevitable by-product of N₂ fixation by nitrogenase, an oxygen-labile enzyme typically containing an iron-molybdenum cofactor (FeMo-co) active site. In Anabaena sp. strain 7120, the enzyme(More)
In the green sulfur bacterium Chlorobaculum tepidum, three sulfur oxidizing enzyme system (Sox) proteins, SoxAXK, SoxYZ, and SoxB (the core TOMES, thiosulfate oxidizing multi-enzyme system) are essential to in vitro thiosulfate oxidation. We purified monomeric flavoprotein SoxF from this bacterium, which had sulfide dehydrogenase activity. SoxF enhanced the(More)
From the photosynthetic green sulfur bacterium Chlorobium tepidum (pro synon. Chlorobaculum tepidum), we have purified three factors indispensable for the thiosulfate-dependent reduction of the small, monoheme cytochrome c(554). These are homologues of sulfur-oxidizing (Sox) system factors found in various thiosulfate-oxidizing bacteria. The first factor is(More)
Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur(More)
Flash-induced optical kinetics at room temperature of cytochrome (Cyt) c 551 and an Fe-S center (CFA/CFB) bound to a purified reaction center (RC) complex from the green sulfur photosynthetic bacterium Chlorobium tepidum were studied. At 551 nm, the flash-induced absorbance change decayed with a t 1/2 of several hundred ms, and the decay was accelerated by(More)
From Bacillus subtilis cell extracts, ferredoxin-NADP+ reductase (FNR) was purified to homogeneity and found to be the yumC gene product by N-terminal amino acid sequencing. YumC is a approximately 94-kDa homodimeric protein with one molecule of non-covalently bound FAD per subunit. In a diaphorase assay with 2,6-dichlorophenol-indophenol as electron(More)
Dark-operative protochlorophyllide (Pchlide) oxidoreductase is a nitrogenase-like enzyme consisting of the two components, L-protein (BchL-dimer) and NB-protein (BchN-BchB-heterotetramer). Here, we show that NB-protein is the catalytic component with Fe-S clusters. NB-protein purified from Rhodobacter capsulatus bound Pchlide that was readily converted to(More)
To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H(2) production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth's surface and use water as the source of(More)
Green sulfur bacteria contain chlorophyllous pigments, chlorophyll (Chl) aPD and bacteriochlorophyll (BChl) aP, esterified with Delta2,6-phytadienol and phytol, respectively, which would be produced by reduction of the geranylgeranyl group at the C-17 propionate residue. In the genome of Chlorobium tepidum, two paralogous genes presumably encoding(More)