Learn More
In fission yeast the onset of mitosis is brought about by Cdc2/Cdc13 kinase, which is inhibited by the Wee1/Mik1 tyrosine kinases and activated by Cdc25 tyrosine phosphatase. This control network integrates many signals, including those that monitor DNA replication, DNA damage and cell size. We report here that a fission yeast MAP kinase pathway links the(More)
BACKGROUND In the fission yeast Schizosaccharomyces pombe, cell growth takes place exclusively at both ends of the cylindrical cell. During this highly polarized growth, microtubules are responsible for the placement of the cell-end marker proteins, the Tea1-Tea4/Wsh3 complex, which recruits the Pom1 DYRK-family protein kinase. Pom1 is required for proper(More)
The stress-activated Wis1-Spc1 protein kinase cascade links mitotic control with environmental signals in Schizosaccharomyces pombe. Fission yeast spc1- mutants are delayed in G2 during normal growth and undergo G2 arrest when exposed to osmotic or oxidative stress. Here we report that Spc1 also has an important role in regulating sexual development in S.(More)
Spc1, an osmotic-stress-stimulated mitogen-activated protein kinase (MAPK) homolog in the fission yeast Schizosaccharomyces pombe, is required for the induction of mitosis and survival in high-osmolarity conditions. Spc1, also known as Sty1, is activated by Wis1 MAPK kinase and inhibited by Pyp1 tyrosine phosphatase. Spc1 is most closely related to(More)
Spc1 in Schizosaccharomyces pombe is a member of the stress-activated protein kinase family, an evolutionary conserved subfamily of mitogen-activated protein kinases (MAPKs). Spc1 is activated by a MAPK kinase homologue, Wis1, and negatively regulated by Pyp1 and Pyp2 tyrosine phosphatases. Mutations in the spc1+ and wis1+ genes cause a G2 cell cycle delay(More)
With the goal of discovering the cellular functions of type 2C protein phosphatases, we have cloned and analyzed two ptc (phosphatase two C) genes, ptc2+ and ptc3+, from the fission yeast Schizosaccharomyces pombe. Together with the previously identified ptc1+ gene, the enzymes encoded by these genes account for approximately 90% of the measurable PP2C(More)
In eukaryotic cells, environmental stress signals are transmitted by evolutionarily conserved MAPKs, such as Hog1 in the budding yeast Saccharomyces cerevisiae, Spc1 in the fission yeast Schizosaccharomyces pombe and p38/JNK in mammalian cells. Here, we report the identification of the Aspergillus nidulans sakA gene, which encodes a member of the stress(More)
In response to oxidative stress, eukaryotic cells induce transcription of genes required for detoxification of oxidants. Here we present evidence that oxidative stress stimuli are transmitted by a multistep phosphorelay system to the Spc1/Sty1 stress-activated protein kinase in the fission yeast Schizosaccharomyces pombe. The fission yeast mpr1(+) gene(More)
Fission yeast Spc1/StyI MAPK is activated by many environmental insults including high osmolarity, oxidative stress, and heat shock. Spc1/StyI is activated by Wis1, a MAPK kinase (MEK), which is itself activated by Wik1/Wak1/Wis4, a MEK kinase (MEKK). Spc1/StyI is inactivated by the tyrosine phosphatases Pyp1 and Pyp2. Inhibition of Pyp1 was recently(More)
BACKGROUND From yeast to human, TOR (target of rapamycin) kinase plays pivotal roles in coupling extracellular stimuli to cell growth and metabolism. TOR kinase functions in two distinct protein complexes, TOR complex 1 (TORC1) and 2 (TORC2), which phosphorylate and activate different AGC-family protein kinases. TORC1 is controlled by the small GTPase Rheb,(More)