Learn More
In order to study the mechanism of intracellular sorting and processing of the Alzheimer's disease amyloid precursor protein (APP), we deleted two potential N-linked glycosylation sites of APP by site-directed mutagenesis. Substitution of alanines for the critical asparagine residues Asn467 and Asn496 was performed. Wild-type and mutant APPs were expressed(More)
Oct-3/4 (Oct-3/Oct-4/POU5F1) is a critical regulator of embryonic stem (ES) cell differentiation, though its role in tissue stem cells that persist in differentiated tissues has not been shown. Here, we show that Oct-3/4 is expressed in neurospheres (NS) composed of neural stem cells and neural progenitor cells and that up- or down-regulation of Oct-3/4 by(More)
The reason why vulnerabilities to mutant polyglutamine (polyQ) proteins are different among neuronal subtypes is mostly unknown. In this study, we compared the gene expression profiles of three types of primary neurons expressing huntingtin (htt) or ataxin-1. We found that heat shock protein 70 (hsp70), a well known chaperone molecule protecting neurons in(More)
By using direct immunocytochemistry of BrU incorporated to RNA in the nuclei, we evaluated the effect of mutant huntingtin and ataxin-1 on general transcription in primary cortical and cerebellar neurons. Our quantitative analyses clearly showed that these mutant polyglutamine disease proteins repress general transcription. In addition, we found that(More)
DNA repair defends against naturally occurring or disease-associated DNA damage during the long lifespan of neurons and is implicated in polyglutamine disease pathology. In this study, we report that mutant huntingtin (Htt) expression in neurons causes double-strand breaks (DSBs) of genomic DNA, and Htt further promotes DSBs by impairing DNA repair. We(More)
Nuclear dysfunction is a key feature of the pathology of polyglutamine (polyQ) diseases. It has been suggested that mutant polyQ proteins impair functions of nuclear factors by interacting with them directly in the nucleus. However, a systematic analysis of quantitative changes in soluble nuclear proteins in neurons expressing mutant polyQ proteins has not(More)
Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis,(More)
By combining immunohistochemical technique with microassay methods, we analyzed regional energy metabolism in vulnerable and tolerant areas of gerbil brains during evolution of neuronal damage after bilateral common carotid artery occlusion for 10 min with subsequent reperfusion. Four animals were used for each reperfusion period. Based on the information(More)
Perturbation of histone acetyl-transferase (HAT) activity is implicated in the pathology of polyglutamine diseases, and suppression of the counteracting histone deacetylase (HDAC) proteins has been proposed as a therapeutic candidate for these intractable disorders. Meanwhile, it is not known whether mutant polyglutamine disease protein affects the HDAC(More)
Mutations in the dysferlin gene cause muscular dystrophies called dysferlinopathy, which include limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). To clarify the frequency, clinicopathological and genetic features of dysferlinopathy in Japan, we performed protein and gene analyses of dysferlin. We examined a total of 107 unrelated(More)