Kazuharu Furutani

Learn More
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated(More)
Functional crosstalk between cell-surface and intracellular ion channels plays important roles in excitable cells and is structurally supported by junctophilins (JPs) in muscle cells. Here, we report a novel form of channel crosstalk in cerebellar Purkinje cells (PCs). The generation of slow afterhyperpolarization (sAHP) following complex spikes in PCs(More)
Drug interaction with target proteins including ion channels is essential for pharmacological control of various cellular functions, but the majority of its molecular mechanisms is still elusive. We recently found that a series of antidepressants preferentially block astroglial K(+)-buffering inwardly rectifying potassium channel (Kir) 4.1 channels over(More)
Cyclic adenosine monophosphate (cAMP) and Ca2+ levels may oscillate in harmony within excitable cells; a mathematical oscillation loop model, the Cooper model, of these oscillations was developed two decades ago. However, in that model all adenylyl cyclase (AC) isoforms were assumed to be inhibited by Ca2+, and it is now known that the heart expresses(More)
Transcellular Mg(2+) transport across epithelia, involving both apical entry and basolateral extrusion, is essential for magnesium homeostasis, but molecules involved in basolateral extrusion have not yet been identified. Here, we show that CNNM4 is the basolaterally located Mg(2+) extrusion molecule. CNNM4 is strongly expressed in intestinal epithelia and(More)
The maintenance of synaptic functions is essential for neuronal information processing, but cellular mechanisms that maintain synapses in the adult brain are not well understood. Here, we report an activity-dependent maintenance mechanism of parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum. When postsynaptic metabotropic glutamate receptor(More)
Partial agonists are used clinically to avoid overstimulation of receptor-mediated signalling, as they produce a submaximal response even at 100% receptor occupancy. The submaximal efficacy of partial agonists is due to conformational change of the agonist-receptor complex, which reduces effector activation. In addition to signalling activators, several(More)
Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak(More)
Membrane potential controls the response of the M2 muscarinic receptor to its ligands. Membrane hyperpolarization increases response to the full agonist acetylcholine (ACh) while decreasing response to the partial agonist pilocarpine. We previously have demonstrated that the regulator of G-protein signaling (RGS) 4 protein discriminates between the(More)
Some cardiovascular and non-cardiovascular drugs frequently cause excessive prolongation of the cardiac action potential (AP) and lead to the development of early afterdepolarisations (EADs), which trigger lethal ventricular arrhythmias. Combining computer simulations in APs with numerical calculations based on dynamical system theory, we investigated(More)