Kazue Hisaoka-Nakashima

Learn More
Although brain-derived neurotrophic factor (BDNF) is localized in primary sensory neurons and has crucial roles in nociceptive transduction, the mechanisms involved in regulation of BDNF exon-specific mRNA expression in dorsal root ganglion (DRG) neurons have yet to be determined. Rat primary cultures of DRG neurons were stimulated with(More)
Recently, multiple neurotrophic/growth factors have been proposed to play an important role in the therapeutic action of antidepressants. In this study, we prepared astrocyte- and neuron-enriched cultures from the neonatal rat cortex, and examined the changes in neurotrophic/growth factor expression by antidepressant treatment using real-time PCR. Treatment(More)
Connexin36 (Cx36), a component of neuronal gap junctions, is crucial for interneuronal communication and regulation. Gap junction dysfunction underlies neurological disorders, including chronic pain. Following a peripheral nerve injury, Cx36 expression in the ipsilateral spinal dorsal horn was markedly decreased over time, which paralleled the time course(More)
Antidepressants increase the proliferation of neural precursors in adult dentate gyrus (DG), which is considered to be involved in the therapeutic action of antidepressants. However, the mechanism underlying it remains unclear. By using cultured adult rat DG-derived neural precursors (ADP), we have already shown that antidepressants have no direct effects(More)
A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and(More)
High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the(More)
It has been previously reported that spinal clock genes controlled under circadian rhythm contribute to the regulation of astrocytic function, which in turn is involved in diverse processes such as nociceptive transduction and the induction of inflammation. However, how clock genes expressed in spinal cord astrocytes are associated with the modulation of(More)
Synaptic dysfunction has recently gained attention for its involvement in mood disorders. Electroconvulsive therapy (ECT) possibly plays a role in synaptic repair. However, the underlying mechanisms remain uncertain. Thrombospondin-1 (TSP-1), a member of the TSP family, is reported to be secreted by astrocytes and to regulate synaptogenesis. We investigated(More)
Spinal cord astrocytes are critical in the maintenance of neuropathic pain. Connexin 43 (Cx43) expressed on spinal dorsal horn astrocytes modulates synaptic neurotransmission, but its role in nociceptive transduction has yet to be fully elaborated. In mice, Cx43 is mainly expressed in astrocytes, not neurons or microglia, in the spinal dorsal horn. Hind paw(More)
Although the clearance of glutamate from the synapse under physiological conditions is performed by astrocytic glutamate transporters, their expression might be diminished under pathological conditions. Microglia glutamate transporters, however, might serve as a back-up system when astrocytic glutamate uptake is impaired, and could have a prominent(More)