Kazimierz Jurga

Learn More
A prototype NMR probe for long RF pulse has been constructed. Its main elements are two coils mounted in the concentric position. The first bigger coil is wound around a glass dewar tube and the second smaller coil is placed inside the dewar. These two coils are thermally isolated by the dewar. A long and strong RF pulse is applied to the bigger coil. The(More)
Spin-lattice NMR relaxation times T1 in the laboratory frame and T1rho(off) as well as T1rho(off) in the rotating frame off-resonance were employed to the study of molecular dynamics of both pristine PPS and thermally treated poly(p-phenylene sulfide) (PPS). The temperature dependence of T1 was exponential in the whole temperature range studied, whereas(More)
A new method for fast spectral-spatial electron paramagnetic resonance imaging (EPRI) is presented. To reduce the time of projections acquisition we propose to combine rapid scan of Zeeman magnetic field using high frequency sinusoidal modulation with simultaneously applied magnetic field gradients, whose amplitude is modulated at low frequency. The(More)
Methodology for the study of dynamics in heteronuclear systems in the laboratory frame was described in the previous paper [1]. Now the methodology for the study of molecular dynamics in the solid state heteronuclear systems in the rotating frame is presented. The solid state NMR off-resonance experiments were carried out on a homemade pulse spectrometer(More)
In the present work, a new method for measuring motional parameters using the off-resonance technique was described. The Lipari-Szabo model-free formalism was used to analyze molecular dynamics in a heteronuclear system [1, 2]. Cross-relaxation solid state nuclear magnetic resonance off-resonance experiments were performed on a homebuilt pulse spectrometer(More)
A new method for fast 2D Electron Paramagnetic Resonance Imaging (EPRI) is presented. To reduce the time of projections acquisition we propose to combine rapid scan of Zeeman magnetic field using high frequency sinusoidal modulation with simultaneously applied magnetic field gradient, whose orientation is changed at low frequency. The correctness of the(More)
Dedicated to Professor H. W. Spiess on the occasion of his 50th birthday A detailed proton second moment and spin-lattice relaxation time investigation of the bilayered compound ( C 1 0 H 2 1 N H 3 ) 2 C d C l 4 is reported. In the low temperature phase the methyl group executes a classical threefold reorientation, while the N H 3 g roup is involved in a(More)
Molecular motions in poly(ethylene-co-norbornene) were studied in a temperature range well below its glass transition point by a few techniques based on the NMR phenomenon. Temperature dependencies of proton spin-lattice relaxation times T1 (at 200 MHz and at 30.2 MHz), proton spin-lattice relaxation time in the rotating frame T1ρ (at 68 kHz) and frequency(More)
The design and construction of a high-performance, low-cost, and easy to assemble adiabatic extension set for homebuilt and commercial spectrometers is described. Described apparatus set was designed for the fast adiabatic passage generation and is based on direct digital synthesizer DDS. This solution gives generator high signal to noise ratio, phase(More)
Polycrystalline progesterone (4-pregnene-3,20-dione, C21H30O2) has been investigated by proton NMR methods between 80 and 350 K. A reduction in dipolar second moment is ascribed to methyl group reorientation. Minima in the spin-lattice relaxation time found in measurements at five frequencies from 7 to 200 MHz are attributed to reorientation of two of the(More)