#### Filter Results:

- Full text PDF available (6)

#### Publication Year

2004

2014

- This year (0)
- Last 5 years (5)
- Last 10 years (8)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Kazim Ilarslan, Emilija Nešović, Miroslava Petrović–Torgašev
- 2004

Some characterizations of the Euclidean rectifying curves, i.e. the curves in E 3 which have a property that their position vector always lies in their rectifying plane, are given in [3]. In this paper, we characterize non–null and null rectifying curves, lying fully in the Minkowski 3–space E 3 1. Also, in considering a causal character of a curve we give… (More)

In this paper, we characterize the spacelike, the timelike and the null rectifying curves in the Minkowski 3-space in terms of centrodes. In particular, we show that the spacelike and timelike rectifying curves are the extremal curves for which the corresponding function takes its extremal value. On the other hand, we also show that the null rectifying… (More)

- Esra Betul Koc Ozturk, Ufuk Ozturk, Kazim Ilarslan, Emilija Nesovic
- Int. J. Math. Mathematical Sciences
- 2013

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We define pseudohyperbolical Smarandache curves according to the Sabban frame in Minkowski 3-space. We obtain the geodesic curvatures and the expression for the Sabban frame vectors of special pseudohyperbolic Smarandache… (More)

- Esra Betul Koc Ozturk, Ufuk Ozturk, Kazim Ilarslan, Emilija Nesovic
- J. Applied Mathematics
- 2014

- Siddika Özkaldi, Kazim İlarslan, Yusuf Yayli
- 2009

In this paper, we define Mannheim partner curves in three dimensional dual space D 3 and we obtain the necessary and sufficient conditions for the Mannheim partner curves in dual space D 3 .

- Ufuk Ozturk, Esra Betul Koc Ozturk, Kazim Ilarslan
- J. Applied Mathematics
- 2013

- OSMAN KEÇİLİOĞLU, KAZIM İLARSLAN
- 2013

In this paper, by using the similar idea of Matsuda and Yorozu [12], we prove that if bitorsion of a quatenionic curve α is no vanish, then there is no quaternionic curve in E is a Bertrand curve. Then we define (1, 3) type Bertrand curves for quatenionic curve in Euclidean 4-space. We give some characterizations for a (1, 3) type quaternionic Bertrand… (More)

- Kazim Ilarslan, Mehmet Yildirim
- J. Systems Science & Complexity
- 2011

- Siddika Özkaldi Karakuş, Kazim İlarslan, Yusuf Yayli
- 2014

In this study, we have investigated the possibility of whether any Frenet plane of a given space curve in a 3-dimensional Euclidean space E 3 also is any Frenet plane of another space curve in the same space. We have obtained some characterizations of a given space curve by considering nine possible case.

- ‹
- 1
- ›