Learn More
We previously reported that urinary excretion rates of angiotensinogen (AGT) provide a specific index of the activity of the intrarenal renin-angiotensin system in angiotensin II-dependent hypertensive rats. Meanwhile, we have recently developed direct enzyme-linked immunosorbent assays (ELISAs) to measure plasma and urinary AGT in humans. This study was(More)
Studies were performed to test the hypothesis that reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) contribute to the pathogenesis of aldosterone/salt-induced renal injury. Rats were given 1% NaCl to drink and were treated with one of the following combinations for 6 weeks: vehicle (0.5% ethanol, SC, n=6); aldosterone (0.75(More)
We reported previously that urinary angiotensinogen (UAGT) levels provide a specific index of the intrarenal renin-angiotensin system (RAS) status in angiotensin II-dependent hypertensive rats. To study this system in humans, we recently developed a human angiotensinogen ELISA. To test the hypothesis that UAGT is increased in hypertensive patients, we(More)
It has recently been shown that glomerular mesangial injury is associated with increases in renal cortical reactive oxygen species (ROS) levels in rats treated chronically with aldosterone and salt. This study was conducted to determine the mechanisms responsible for aldosterone-induced ROS production in cultured rat mesangial cells (RMC). Oxidative(More)
The development of glomerulonephritis causes glomerular injury and renal dysfunction and is thought to increase renin release, thus activating the renin-angiotensin system (RAS). The aims of this study were to demonstrate activation of the intrarenal RAS and determine the effects of direct renin inhibition (DRI) on the progression of glomerulonephritis.(More)
The central nervous system plays an important role in the regulation of energy balance and glucose homeostasis mainly via controlling the autonomic output to the visceral organs. The autonomic output is regulated by hormones and nutrients to maintain adequate energy and glucose homeostasis. Insulin action is mediated via insulin receptors (IR) resulting in(More)
OBJECTIVE Reactive oxygen species (ROS) participate in the intracellular signalling of angiotensin II. However, the mechanisms of the interaction of ROS with hypertension and mitogen-activated protein kinase (MAPK) in vivo have remained unclear. Angiotensin II infusion provokes sustained hypertension accompanied with enhancement of ROS production; initially(More)
We recently reported that urinary excretion rates of angiotensinogen (U(AGT)) provide a specific index of intrarenal renin-angiotensin (ANG) system (RAS) status in ANG II-dependent hypertensive rats. When this is shown to be applicable to human subjects, a diagnostic test to identify those hypertensive patients most likely to respond to an RAS blockade(More)
The monocyte chemoattractant protein-1 (MCP-1)/CC-chemokine receptor 2 (CCR2) pathway plays a critical role in the development of antiglomerular basement membrane (anti-GBM) nephritis. We recently showed angiotensin II (Ang II) infusion in rats activated MCP-1 and transforming growth factor-β1 (TGF-β1), which in turn induced macrophage infiltration of renal(More)
This study was performed in transgenic mice to test the hypothesis that the selective intrarenal overproduction of ANG II increases intrarenal mouse (m) angiotensinogen (AGT) expression. We used the following three groups: 1) single transgenic mice (group A, n = 14) expressing human (h) AGT only in the kidney, 2) double-transgenic mice (group D, n = 13)(More)