Learn More
—Techniques that could precisely monitor human motion are useful in applications such as rehabilitation, virtual reality, sports science, and surveillance. Most of the existing systems require wiring that restrains the natural movement. To overcome this limitation, a wearable wireless sensor network using accelerometers has been developed in this paper to(More)
This paper studies the possibility of distinguishing between benign and malignant masses by exploiting the morphology-dependent temporal and spectral characteristics of their microwave backscatter response in ultra-wideband breast cancer detection. The spiculated border profiles of 2-D breast masses are generated by modifying the baseline elliptical rings(More)
This paper investigates the classification and identification of objects of different material behind a wall. The different materials are defined based on their permittivity, permeability and conductivity and include concrete, wood, glass and metal. A simulation program based on the finite difference time domain (FDTD) [1] method was first used to model(More)
Techniques that could be used to monitor human motion precisely are helpful in various applications such as rehabilitation, gait analysis, and athletic performance analysis. This paper focuses on the 3-D foot trajectory measurements based on a wearable wireless ultrasonic sensor network. The system consists of an ultrasonic transmitter (mobile) and several(More)
In this paper, a new method for measuring and monitoring human body joint angles, which uses wearable ultrawideband (UWB) transceivers mounted on body segments, is proposed and investigated. The model is based on providing a high ranging accuracy (intersensor distance) between a pair of transceivers placed on the adjacent segments of the joint center of(More)