Learn More
Transgene expression of the apolipoprotein B mRNA-editing enzyme (APOBEC-1) causes dysplasia and carcinoma in mouse and rabbit livers. Using a modified differential display technique, we identified a novel mRNA (NAT1 for novel APOBEC-1 target no. 1) that is extensively edited at multiple sites in these livers. The aberrant editing alters encoded amino(More)
Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced(More)
Familial defective apolipoprotein B100 (FDB) is caused by a mutation of apo-B100 (R3500Q) that disrupts the receptor binding of low density lipoproteins (LDL), which leads to hypercholesterolemia and premature atherosclerosis. In this study, mutant forms of human apo-B were expressed in transgenic mice, and the resulting human recombinant LDL were purified(More)
Apolipoprotein (apo-) B mRNA editing is the deamination of cytidine that creates a new termination codon and produces a truncated version of apo-B (apo-B48). The cytidine deaminase catalytic subunit [apo-B mRNA-editing enzyme catalytic polypeptide 1 (APOBEC-1)] of the multiprotein editing complex has been identified. We generated transgenic rabbits and mice(More)
In a group of 110 subjects with severe coronary artery disease, two were heterozygous for the apolipoprotein (apo) B arginine3,500----glutamine mutation that characterizes familial defective apo B-100. Both affected subjects were moderately hypercholesterolemic, and their low density lipoproteins (LDLs) were deficient in binding to the LDL receptor.(More)
Low density lipoprotein (LDL) and beta-very low density lipoprotein (beta-VLDL) are internalized by the same receptor in mouse peritoneal macrophages and yet their endocytic patterns differ; beta-VLDL is targeted to both widely distributed and perinuclear vesicles, whereas LDL is targeted almost entirely to perinuclear lysosomes. This endocytic divergence(More)
Apolipoprotein (apo-) E3, when combined with the phospholipid dimyristoylphosphatidylcholine (DMPC), binds avidly to apo-B,E (low density lipoprotein) receptors on human fibroblasts. Apolipoprotein E2 isolated from type III hyperlipoproteinemic subjects, which differs from apo-E3 by the presence of cysteine instead of arginine at residue 158, possesses only(More)
Differences in low density lipoprotein (LDL) receptor-binding affinity among LDL particles of different size were examined in competitive binding assays in human skin fibroblasts and LDL (d = 1.020 to 1.050 g/mL) from subjects with a predominance of large (> or = 272 A), medium (259 to 271 A), and small (< or = 257 A) LDL. Among 57 normolipidemic subjects(More)
A macromolecule in human platelet secretory products was demonstrated previously to inhibit the binding and uptake of acetoacetylated (AcAc) low density lipoproteins (LDL) by scavenger receptors on mouse peritoneal macrophages. In the current study, this macromolecule was purified to apparent homogeneity by DEAE-Sephacel chromatography, Sephacryl S-300(More)