Learn More
In the recent past, wireless sensor networks have found their way into a wide variety of applications and systems with vastly varying requirements and characteristics. As a consequence, it is becoming increasingly difficult to discuss typical requirements regarding hardware issues and software support. This is particularly problematic in a multidisciplinary(More)
Ubiquitous computing environments are typically based upon ad hoc networks of mobile computing devices. These devices may be equipped with sensor hardware to sense the physical environment and may be attached to real world artifacts to form so-called smart things. The data sensed by various smart things can then be combined to derive knowledge about the(More)
Wireless sensor networks (WSNs) consist of large populations of wirelessly connected nodes, capable of computation, communication, and sensing. Sensor nodes cooperate in order to merge individual sensor readings into a high-level sensing result, such as integrating a time series of position measurements into a velocity estimate. The physical time of sensor(More)
Wireless sensor networks allow fine-grained observations of real-world phenomena. However, providing constant measurement updates incurs high communication costs for each individual node, resulting in increased energy depletion in the network. Data reduction strategies aim at reducing the amount of data sent by each node, for example by predicting the(More)
We present a hardware and software platform for rapid prototyping of augmented sensor network systems, which may be temporarily connected to a backend infrastructure for data storage and user interaction, and which may also make use of actuators or devices with rich computing resources that perform complex signal processing tasks. The use of Bluetooth as(More)
The developed world is awash with sensors. However, they are typically locked into unimodal closed systems. To unleash their full potential, access to sensors should be opened such that their data and services can be integrated with data and services available in other information systems facilitating novel applications and services that are based on the(More)
We present our results in the conceptual design and the implementation of ubiquitous computing applications using smart identification technologies. First, we describe such technologies and their potential application areas, followed by an overview of some applications we have developed. Based on the experiences we gained from the development of these(More)
Collisions are a source of inefficiency in contention-based MAC protocols that should be reduced to a minimum. We show that concurrent multiple access to a communication channel will, however, not necessarily lead to a collision with undesirable effects. Rather, we demonstrate that it is possible for a receiver to hear the bitwise “or” of the transmissions(More)
In this chapter, we review time synchronization and calibration for wireless sensor networks. We will first consider time synchronization in Sections 1.1–1.6, before turning to calibration in Section 1.7. We will show that time synchronization can be considered as a calibration problem and many observations about time synchronization can be transferred to(More)