Kavitha Gowrishankar

Learn More
Approximately 50% of melanomas require oncogenic B-RAF(V600E) signaling for proliferation, survival, and metastasis, and the use of highly selective B-RAF inhibitors has yielded remarkable, although short-term, clinical responses. Reactivation of signaling downstream of B-RAF is frequently associated with acquired resistance to B-RAF inhibitors, and the(More)
Aberrant activation of the BRAF kinase occurs in ∼60% of melanomas, and although BRAF inhibitors have shown significant early clinical success, acquired resistance occurs in most patients. Resistance to chronic BRAF inhibition often involves reactivation of mitogen-activated protein kinase (MAPK) signaling, and the combined targeting of BRAF and its(More)
Approximately 50% of melanomas depend on mutant B-RAF for proliferation, metastasis and survival. The inhibition of oncogenic B-RAF with highly targeted compounds has produced remarkable albeit short-lived clinical responses in B-RAF mutant melanoma patients. Reactivation of signaling downstream of B-RAF is frequently associated with acquired resistance to(More)
Monoclonal antibodies against immune checkpoint blockade have proven to be a major success in the treatment of melanoma. The programmed death receptor-1 ligand-1 (PD-L1) expression on melanoma cells is believed to have an inhibitory effect on T cell responses and to be an important escape mechanism from immune attack. Previous studies have shown that PD-L1(More)
The transcription factor NF-kappaB (NF-kB) is a key regulator of cytokine and chemokine production in melanoma and is responsible for symptoms such as anorexia, fatigue, and weight loss. In addition, NF-kB is believed to contribute to progression of the disease by upregulation of cell cycle and anti-apoptotic genes and to contribute to resistance against(More)
Epigenetic changes are widespread in melanoma and contribute to the pathogenic biology of this disease. In the present study, we show that I-BET151, which belongs to a new class of drugs that target the BET family of epigenetic "reader" proteins, inhibits melanoma growth in vivo and induced variable degrees of apoptosis in a panel of melanoma cells.(More)
Varicella-zoster virus (VZV) reactivation causes herpes zoster, which is accompanied by an influx of lymphocytes into affected ganglia, but the stimulus for this infiltrate is not known. We report that VZV infection of ganglia leads to increased CXCL10 production in vitro, in an explant ganglion model and in naturally infected dorsal root ganglia (DRG)(More)
Neurotrophin receptor alike death domain protein (NRADD) is a death-receptor-like protein with a unique ectodomain and an intracellular domain homologous to p75(NTR). Expression of NRADD results in apoptosis, but only in certain cell types. This paper characterizes the expression and proteolytic processing of the mature 55 kDa glycoprotein. N-terminally(More)
Acquired resistance to BRAF inhibitors often involves MAPK re-activation, yet the MEK inhibitor trametinib showed minimal clinical activity in melanoma patients that had progressed on BRAF-inhibitor therapy. Selective ERK inhibitors have been proposed as alternative salvage therapies. We show that ERK inhibition is more potent than MEK inhibition at(More)
T cell line-tropic (T-tropic) HIV type 1 strains enter cells by interacting with the cell-surface molecules CD4 and CXCR4. We have generated transgenic mice predominantly expressing human CD4 and CXCR4 on their CD4-positive T lymphocytes (CD4+ T cells). Their primary thymocytes are susceptible to T-tropic but not to macrophage-tropic HIV-1 infection in(More)