Kaveh Vahedipour

Learn More
A new open-source software project is presented, JEMRIS, the Jülich Extensible MRI Simulator, which provides an MRI sequence development and simulation environment for the MRI community. The development was driven by the desire to achieve generality of simulated three-dimensional MRI experiments reflecting modern MRI systems hardware. The accompanying(More)
Multi-modal MR-PET-EEG data acquisition in simultaneous mode confers a number of advantages at 3 T and 9.4 T. The three modalities complement each other well; structural-functional imaging being the domain of MRI, molecular imaging with specific tracers is the strength of PET, and EEG provides a temporal dimension where the other two modalities are weak.(More)
EPI with Keyhole (EPIK) is a hybrid imaging technique used to improve the performance of EPI in dynamic MRI applications. The method had been previously validated at 1.5 T with both phantom and in vivo images; EPIK was able to provide a higher temporal resolution and less image distortions than single-shot EPI. The data presented here demonstrate that the(More)
This work utilises general numerical magnetic resonance imaging MRI simulations to predict the spatial specificity of the blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signal. A Monte Carlo simulation approach was utilized on a microvascular structure consisting of randomly oriented cylinders representing blood vessels. This framework was(More)
Loudness dependence of auditory evoked potentials (LDAEP) evaluates loudness processing in the human auditory system and is often altered in patients with psychiatric disorders. Previous research has suggested that this measure may be used as an indicator of the central serotonergic system through the highly serotonergic innervation of the auditory cortex.(More)
Membrane chromatography (MC) is increasingly being used as a purification platform for large biomolecules due to higher operational flow rates. The zonal rate model (ZRM) has previously been applied to accurately characterize the hydrodynamic behavior in commercial MC capsules at different configurations and scales. Explorations of capsule size, geometry(More)
The zonal rate model (ZRM) has previously been applied for analyzing the performance of axial flow membrane chromatography capsules by independently determining the impacts of flow and binding related non-idealities on measured breakthrough curves. In the present study, the ZRM is extended to radial flow configurations, which are commonly used at larger(More)
To study the BOLD effect numerically, blood vessels are often modelled as infinite cylinders [1] (infinite cylinder model, ICM). To simplify analytical calculations, signal dephasing resulting from spins diffusing around these infinite cylinders is then usually further approximated as a mono-exponential signal decay as suggested by Ogawa et al.[1]. Although(More)
For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily(More)