Kaushik Sengupta

  • Citations Per Year
Learn More
A- and B-type lamins are intermediate filament proteins constituting the nuclear lamina underneath the nuclear envelope thereby conferring proper shape and mechanical rigidity to the nucleus. Lamin proteins are also shown to be related diversely to basic nuclear processes. More than 400 mutations in human lamin A protein alone have been reported to produce(More)
Nuclear lamins are type V intermediate filament proteins which form an elastic meshwork underlying the inner nuclear membrane. Lamins directly contribute to maintain the nuclear shape and elasticity. More than 400 mutations have been reported in lamin A that are involved in diseases known as laminopathies. These mutations are scattered mainly in the lamin(More)
Lamins are mechanosensitive and elastic components of the nuclear lamina that respond to external mechanical cues by altering gene regulation in a feedback mechanism. Numerous mutations in A-type lamins cause a plethora of diverse diseases collectively termed as laminopathies, the majority of which are characterized by irregularly shaped, fragile, and(More)
BACKGROUND A and B-type lamins are integral scaffolding components of the nuclear lamina which impart rigidity and shape to all metazoan nuclei. Over 450 mutations in A-type lamins are associated with 16 human diseases including dilated cardiomyopathy (DCM). Here, we show that DCM mutants perturb the self-association of lamin A (LA) and it's binding with(More)
Bleb formation has been correlated with nonmuscle myosin II (NM-II) activity. Whether three isoforms of NM-II (NM-IIA, -IIB and -IIC) have the same or differential roles in bleb formation is not well understood. Here we report that ectopically expressed, GFP-tagged NM-II isoforms exhibit different types of membrane protrusions, such as multiple blebs,(More)
Lamin A protein, encoded by the LMNA gene, belongs to the type V intermediate filament protein family and is a major nuclear protein component of higher metazoan organisms, including humans. Lamin A along with B-type lamins impart structural rigidity to the nucleus by forming a lamina that is closely apposed to the inner nuclear membrane and is also present(More)
BACKGROUND Dilated Cardiomyopathy (DCM) is one of the most commonly encountered heart diseases reported globally. It is characterized by enlarged ventricles with impaired systolic and diastolic functions. Mutations in LMNA gene are one of the causative factors to precipitate the disease. However, association of SNPs of LMNA with DCM in particular has not(More)
Lamin B1 is one of the major constituents of the nuclear lamina, a filamentous network underlying the nucleoplasmic side of the inner nuclear membrane. Homopolymerization of lamin B1, coupled to the homotypic and heterotypic association of other lamin types, is central to building the higher order network pattern inside the nucleus. This in turn maintains(More)
Hsp70 aids in protein folding and directs misfolded proteins to the cellular degradation machinery. We describe discrete roles of Hsp70,SSA1 as an important quality-control machinery that switches functions to ameliorate the cellular environment. SSA1 facilitates folding/maturation of newly synthesized protein kinases by aiding their phosphorylation process(More)
Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be(More)
  • 1