Learn More
High leakage current in deep-submicrometer regimes is becoming a significant contributor to power dissipation of CMOS circuits as threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, the identification and modeling of different leakage components is very important for estimation and reduction of leakage power, especially(More)
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to(More)
In this paper, we have analyzed and modeled failure probabilities (access-time failure, read/write failure, and hold failure) of synchronous random-access memory (SRAM) cells due to process-parameter variations. A method to predict the yield of a memory chip based on the cell-failure probability is proposed. A methodology to statistically design the SRAM(More)
Ultra-low voltage operation of memory cells has become a topic of much interest due to its applications in very low energy computing and communications. However, due to parameter variations in scaled technologies, stable operation of SRAMs is critical for the success of low-voltage SRAMs. It has been shown that conventional 6T SRAMs fail to achieve reliable(More)
Process parameter variations are expected to be significantly high in a sub-50-nm technology regime, which can severely affect the yield, unless very conservative design techniques are employed. The parameter variations are random in nature and are expected to be more pronounced in minimum geometry transistors commonly used in memories such as SRAM.(More)
Deep-submicron CMOS designs maintain high transistor switching speeds by scaling down the supply voltage and proportionately reducing the transistor threshold voltage. Lowering the threshold voltage increases leakage energy dissipation due to subthreshold leakage current even when the transistor is not switching. Estimates suggest a five-fold increase in(More)
Where you can find the low power cmos vlsi circuit design easily? Is it in the book store? On-line book store? are you sure? Keep in mind that you will find the book in this site. This book is very referred for you because it gives not only the experience but also lesson. The lessons are very valuable to serve for you, that's not about who are reading this(More)
Low power is an imperative requirement for portable multimedia devices employing various signal processing algorithms and architectures. In most multimedia applications, human beings can gather useful information from slightly erroneous outputs. Therefore, we do not need to produce exactly correct numerical outputs. Previous research in this context(More)
Low-power is an imperative requirement for portable multimedia devices employing various signal processing algorithms and architectures. In most multimedia applications, the final output is interpreted by human senses, which are not perfect. This fact obviates the need to produce exactly correct numerical outputs. Previous research in this context exploits(More)
Approximate computing is an emerging design paradigm that enables highly efficient hardware and software implementations by exploiting the inherent resilience of applications to in-exactness in their computations. Previous work in this area has demonstrated the potential for significant energy and performance improvements, but largely consists of ad hoc(More)