Kaushal S. Patel

Learn More
Chronic opioid antagonist treatment produces functional supersensitivity and mu-opioid receptor (muOR) upregulation. Studies suggest a role for G-protein receptor kinases (GRKs) and dynamin (DYN), but not signaling proteins (e.g., G(ialpha2)), in regulation of muOR density following opioid treatment. Therefore, this study examined muOR density, agonist(More)
Opioid agonists and antagonists can regulate the density of mu-opioid receptors in whole animal and in cell culture. High intrinsic efficacy agonists (e.g., etorphine), but not lower intrinsic efficacy agonists (e.g., morphine), produce mu-opioid receptor down-regulation and can alter the abundance of mu-opioid receptor mRNA. Conversely, opioid antagonists(More)
Long-term exposure of ethanol (EtOH) alters the structure and function in brain and spinal cord. The present study addresses the mechanisms of EtOH-induced damaging effects on spinal motoneurons in vitro. Altered morphology and biochemical changes of such damage were demonstrated by in situ Wright staining and DNA ladder assay. EtOH at low to moderate(More)
Chronic opioid antagonist treatment increases the density of mu-opioid receptors (muOR) in many model systems. In previous studies, naltrexone treatment produced an increase in muOR density accompanied by decreases in GRK-2 and DYN-2 protein abundance. To examine the relationship between changes in receptor density and proteins involved in receptor(More)
Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro.(More)
Angiogenesis is process of new blood vessel formation that occurs under both normal and pathological conditions. In the normal state, two distinct processes can be seen. One utilizes endothelial progenitor cells (EPC) and the second utilizes existing vasculature to generate new vessels. The healthy body controls angiogenesis through a series of "on"(More)
  • 1