Katterine A Salazar

Learn More
Specialized cells transport vitamin C in its reduced form using sodium-dependent cotransporters (SVCT1 and SVCT2). Additionally, different cells transport the oxidized form of vitamin C, dehydroascorbic acid, through glucose transporters (GLUTs). We have proposed recently a model for vitamin C uptake that resolves the apparent contradiction that although(More)
Ascorbic acid (AA) is best known for its role as an essential nutrient in humans and other species. As the brain does not synthesize AA, high levels are achieved in this organ by specific uptake mechanisms, which concentrate AA from the bloodstream to the CSF and from the CSF to the intracellular compartment. Two different isoforms of sodium-vitamin C(More)
Vitamin C is reabsorbed from the renal lumen by one isoform of sodium-vitamin C co-transporters that mediate high affinity sodium-dependent L-ascorbic acid transport. Sodium-vitamin C cotransporter-1 mRNA has been detected in intestine and liver and the S3 segment of the renal proximal tubule. Here, we found that its distribution was broader and all three(More)
In vitro and in vivo studies suggest that the basolateral membrane of choroid plexus cells, which is in contact with blood vessels, is involved in the uptake of the reduced form of vitamin C, ascorbic acid (AA), through the sodium-vitamin C cotransporter, (SVCT2). Moreover, very low levels of vitamin C were observed in the brains of SVCT2-null mice. The(More)
Known as a critical antioxidant, recent studies suggest that vitamin C plays an important role in stem cell generation, proliferation and differentiation. Vitamin C also enhances neural differentiation during cerebral development, a function that has not been studied in brain precursor cells. We observed that the rat neurogenic niche is structurally(More)
Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA(More)
Different studies have demonstrated the importance of micronutrients, such as vitamins, for normal adult brain function and development. Vitamin C is not synthesized in the brain, but high levels are detected in this organ because of the existence of specific uptake mechanisms, which concentrate ascorbic acid from the bloodstream to the cerebrospinal fluid(More)
Stem cells are considered a valuable cellular resource for tissue replacement therapies in most brain disorders. Stem cells have the ability to self-replicate and differentiate into numerous cell types, including neurons, oligodendrocytes and astrocytes. As a result, stem cells have been considered the "holy grail" of modern medical neuroscience. Despite(More)
Vitamin C is an essential micronutrient in the human diet; its deficiency leads to a number of symptoms and ultimately death. After entry into cells within the central nervous system (CNS) through sodium vitamin C transporters (SVCTs) and facilitative glucose transporters (GLUTs), vitamin C functions as a neuromodulator, enzymatic cofactor, and reactive(More)
Expression of the sodium and ascorbic acid (AA) cotransporter SVCT2 is induced during the period of cellular arborization and synaptic maturation of early postnatal (P1-P5) rat cerebral neurons. The physiological importance of the transporter for neurons is evidenced by the lethality and delayed neuronal differentiation detected in mice with ablation of(More)