Katsuro Kameyama

Learn More
Most neurons in the visual cortex are selectively responsive to visual stimulation of a narrow range of orientations, and GABAergic neurons are considered to play a role in the formation of such orientation selectivity. This suggests that response properties of GABAergic neurons may be different from those of excitatory neurons. This view remains unproved,(More)
Neuronal circuits in the cerebral cortex consist mainly of glutamatergic/excitatory and GABAergic/inhibitory neurons. In the visual cortex, the binocular responsiveness of neurons is modified by monocular visual deprivation during the critical period of postnatal development. Although GABAergic neurons are considered to play a key role in the expression of(More)
Most neurons in the visual cortex are selectively responsive to visual stimulation of a narrow range of orientations, and GABAergic neurons are considered to play a role in the formation of such orientation selectivity. This suggests that response properties of GABAergic neurons may be different from those of excitatory neurons. This view remains unproved,(More)
Latent TGF-β-binding protein-2 (LTBP-2) is an extracellular matrix protein associated with microfibrils. Homozygous mutations in LTBP2 have been found in humans with genetic eye diseases such as congenital glaucoma and microspherophakia, indicating a critical role of the protein in eye development, although the function of LTBP-2 in vivo has not been well(More)
Binocular visual responsiveness of neurons in visual cortex of the cat can be changed by monocular visual deprivation in the critical period of postnatal development. It is hypothesized that afferents from each eye compete with one another for synaptic connections with cortical neurons so that less active afferents from the deprived eye fail to maintain the(More)
The mammalian visual system exhibits significant experience-induced plasticity in the early postnatal period. While physiological studies have revealed the contribution of the CB1 cannabinoid receptor (CB1) to developmental plasticity in the primary visual cortex (V1), it remains unknown whether the expression and localization of CB1 is regulated during(More)
Monocular deprivation induces a rapid ocular dominance change in the developing visual cortex. The early phase of the change is supposed to be labile and stabilized later by consolidation processes. To test the stability of early ocular dominance change, we examined whether binocular responses of cortical neurons can recover after a brief monocular(More)
  • 1