Katsuo Katayanagi

Learn More
The three-dimensional structure of RNase H from Escherichia coli was determined at 1.8 A resolution by X-ray crystallography. The enzyme was found to belong to the alpha + beta class of structures, consisting of two distinct domains. The structure implies a possible region interacting with a DNA-RNA hybrid. The Mg2(+)-binding site essential for activity is(More)
The x-ray structure of T4 endonuclease V, an enzyme responsible for the first step of a pyrimidine-dimer-specific excision-repair pathway, was determined at a 1.6-angstrom resolution. The enzyme consists of a single compact domain classified into an all-alpha structure. This single domain has two distinct catalytic activities; it functions as a pyrimidine(More)
Tertiary models of ribonuclease H (RNase H) domains in reverse transcriptases (RTs) from Moloney murine leukemia virus (MuLV) and human immunodeficiency virus (HIV-1) were built based upon the X-ray structure of RNase H from Escherichia coli (E. coli RNase H). In two models of RT-RNase H domains, not only active site residues but also residues, which(More)
Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1), previously thought to be a backup enzyme for uracil-DNA glycosylase, has recently been shown to excise 5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU) bearing an oxidized group at ring C5 as well as an uracil. In the present study, we used site-directed(More)
The crystal structure of a class I aminoacyl-transfer RNA synthetase, glutamyl-tRNA synthetase (GluRS) from Thermus thermophilus, was solved and refined at 2.5 A resolution. The amino-terminal half of GluRS shows a geometrical similarity with that of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) of the same subclass in class I, comprising the class(More)
We have developed fluorescent probes for the detection of strand scission in the excision repair of oxidatively damaged bases. They were hairpin-shaped oligonucleotides, each containing an isomer of thymine glycol or 5,6-dihydrothymine as a damaged base in the center, with a fluorophore and a quencher at the 5'- and 3'-ends, respectively. Fluorescence was(More)
The effects of salt on the structure, stability, and enzymatic function of a novel dihydrofolate reductase (HjDHFR P1) from a hyperhalophilic archaeon, Haloarcula japonica strain TR-1 living in a Japanese saltern, were studied using ultraviolet absorption, circular dichroism (CD), and fluorescence spectroscopy. HjDHFR P1 had a partial structure at pH 8.0 in(More)
This paper proposes new product-sum type public-key cryptosystems using the Chinese remainder theorem as the trapdoor. The security of the proposed schemes is based on the difficulty of finding a specific solution of the linear Diophantine equation. The proposed schemes are invulnerable to the low-density attack because they can realize the sufficiently(More)
Dihydrofolate (DHF) reductase coded by a plasmid of the extremely halophilic archaeon Haloarcula japonica strain TR-1 (HjDHFR P1) shows moderate halophilicity on enzymatic activity at pH 6.0, although there is no significant effect of NaCl on its secondary structure. To elucidate the salt-activation and -inactivation mechanisms of this enzyme, we(More)
  • 1