Katsunori Isono

  • Citations Per Year
Learn More
Use of uncalibrated images has found many applications such as image synthesis. However, it is not easy to specify the desired position of the new image in projective or affine space. This paper proposes to recover Euclidean structure from uncalibrated images using domain knowledge such as distances and angles. The knowledge we have is usually about an(More)
Single-particle analysis is one of the methods for structural studies of protein and macromolecules; it requires advanced image analysis of electron micrographics. Reconstructing three-dimensional (3D) structure from microscope images is not an easy analysis because of the low image resolution of images and lack of the directional information of images in(More)
Single particle analysis is one of the methods for structural studies of protein and macromolecules developed in image analysis on electron microscopy. Reconstructing 3D structure from microscope images is not an easy analysis because of the low resolution of images and lack of the directional information of images in 3D structure. To improve the(More)
Inspired by Hebb's cell assembly theory about how the brain worked, we have developed a function localization neural network (FLNN). The main part of a FLNN is structurally the same as an ordinary feedforward neural network, but it is considered to consist of several overlapping modules, which are switched according to input patterns. A FLNN constructed in(More)
Single particle analysis is one of the methods for structural studies of protein and macromolecules developed in image analysis on electron microscopy. Reconstructing 3D structure from microscope images is not an easy analysis because of the low resolution of images and lack of the directional information of images in 3D structure. To improve the(More)
We examined the statistical performance of clustering single particle molecular images by bottom-up clustering, a hierarchical algorithm, using simulated protein images with a low signal-to-noise ratio. Using covariance for the measure of similarity together with the iterative alignment, our method was found to be fairly robust against noise. Clustering(More)
  • 1