Katsumi Tanigaki

  • Citations Per Year
Learn More
Optoelectronic devices based on layered materials such as graphene have resulted in significant interest due to their unique properties and potential technological applications. The electric and optoelectronic properties of nano GaTe flakes as layered materials are described in this article. The transistor fabricated from multilayer GaTe shows a p-type(More)
The temperature-sensitive property of polyhydroxylated metallofullerene film of Gd@C82(OH)x with special hydroxyl number was studied using synchrotron radiation ultraviolet photoelectron spectroscopy (UPS) and TEM techniques. From room temperature (RT) to 4 degrees C the photoelectron onset energy of the spectra of Gd@C82(OH)12 shifted from 1.9 to 0.2 eV,(More)
We have performed high-resolution angle-resolved photoemission spectroscopy on an FeSe superconductor (T_{c}∼8  K), which exhibits a tetragonal-to-orthorhombic structural transition at T_{s}∼90  K. At low temperature, we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of(More)
Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other(More)
From specific heat measurements in high quality H2@C60 samples performed over a broad temperature range, we obtain the smallest yet observed splitting of rotational energy sublevels of encapsulated single H2 molecules, 0.1-0.2 meV, in the nearly spherical potential well provided by highly isotropic C60 cages. Additionally, we find evidence of the quantized(More)
We report three-dimensional (3D) nanoporous graphene with preserved 2D electronic properties, tunable pore sizes, and high electron mobility for electronic applications. The complex 3D network comprised of interconnected graphene retains a 2D coherent electron system of massless Dirac fermions. The transport properties of the nanoporous graphene show a(More)
Among many two-dimensional (2D) high T(C) superconductors, graphite intercalation compounds (GICs) are the most famous intercalation family, which are classified as typical electron-phonon mediated superconductors. We show unambiguous experimental facts that BaC(6), the superconductivity of which has been missing for many years so far among various alkaline(More)
Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity,(More)
A novel crystal of Ba6Ce2Au4Si42 with Ba and Ce encapsulated into silicon-polyhedral clusters is self-assembled from the state of elemental mixture. Each atom in the crystal is arranged in its well-defined position with a nanoscale period, causing unique interactions between the conduction and the magnetic electrons originating from the independent sources(More)