Katsuko Furukawa

Learn More
Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was(More)
Chondrocytes in articular cartilage synthesize collagen type II and large sulfated proteoglycans, whereas the same cells cultured in monolayer (2D) dedifferentiate into fibroblastic cells and express collagen type I and small proteoglycans. On the other hand, a pellet culture system was developed as a method for preventing the phenotypic modulation of(More)
Our objective was to investigate the hypothesis that tissue-engineered cartilage with promising biochemical, mechanical properties can be formed by loading mechanical stress under existing cell-cell interactions analogous to those that occur in condensation during embryonic development. By loading dedifferentiated chondrocytes with mechanical stress under(More)
If a tissue-engineered cartilage transplant is to succeed, it needs to integrate with the host tissue, to endure physiological loading, and to acquire the phenotype of the articular cartilage. Although there are many reported treatments for osteochondral defects of articular cartilage, problems remain with the use of artificial matrices (scaffolds) and the(More)
Perfusion culture systems have proven to be effective bioreactors for constructing tissue engineered bone in vitro, but existing circuit-based perfusion systems are complicated and costly for conditioned culture due to the large medium volume required. A compact perfusion system for artificial bone fabrication using oscillatory flow is described here. Mouse(More)
We investigated whether articular chondrocytes could form three-dimensional tissue-engineered cartilage in a rotational culture system without a scaffold. A suspension of chondrocytes derived from Japanese white rabbits was inoculated into a mold. Eight hours later, the cell suspension in the mold showed cell aggregation, forming a chondrocyte plate. The(More)
Some treatments for full thickness defects of the articular cartilage, such as the transplantation of cultured chondrocytes have already been performed. However, in order to overcome osteoarthritis, we must further study the partial thickness defects of articular cartilage. It is much more difficult to repair a partial thickness defect because few repair(More)
A medium perfusion system is expected to be beneficial for three-dimensional (3D) culture of engineered bone, not only by chemotransport enhancement but also by mechanical stimulation. In this study, perfusion systems with either unidirectional or oscillatory medium flow were developed, and the effects of the different flow profiles on 3D culturing of(More)
Tissue engineering approaches have been clinically tried to repair damaged articular cartilages. It is an essential step to uniformly seed chondrocytes into 3D scaffolds in order to reconstruct tissue-engineered cartilages in vitro, but the tissue engineering could not have been provided with efficient cell seeding methods. Type I collagen is clinically(More)
Infertility caused by ovarian or tubal problems can be treated using In Vitro Fertilization and Embryo Transfer (IVF-ET); however, this is not possible for women with uterine loss and malformations that require uterine reconstruction for the treatment of their infertility. In this study, we are the first to report the usefulness of decellularized matrices(More)