Katsuharu Saito

Learn More
In Lotus japonicus, seven genetic loci have been identified thus far as components of a common symbiosis (Sym) pathway shared by rhizobia and arbuscular mycorrhizal fungi. We characterized the nup85 mutants (nup85-1, -2, and -3) required for both symbioses and cloned the corresponding gene. When inoculated with Glomus intraradices, the hyphae managed to(More)
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual(More)
The effects of defoliation on arbuscular mycorrhizal (AM) associations in the field were investigated in terms of the community structure of AM fungi colonizing roots of grassland plants; the carbohydrate balance of the host plants was also determined. We focused on two plant species dominating Japanese native grasslands: the grazing-intolerant species(More)
Arbuscular mycorrhizal (AM) fungi accumulate a massive amount of phosphate as polyphosphate to deliver to the host, but the underlying physiological and molecular mechanisms have yet to be elucidated. In the present study, the dynamics of cationic components during polyphosphate accumulation were investigated in conjunction with transcriptome analysis.(More)
Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus(More)
Localization and movement of organelles in living hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita, were observed using a combination of fluorescent probes and laser-scanning confocal microscopy. Dense, evenly distributed acidic vesicles were visible in germ tubes and extraradical hyphae using DIC with the fluorescent acidotropic probe(More)
With the original aim of surveying the role of exopolysaccharide (EPS) in Lotus-Mesorhizobium symbiosis, we carried out Tn5 mutagenesis of Mesorhizobium loti and obtained 32 mutants with defects in EPS biosynthesis. One of the mutants, HIA22, formed pseudonodules and failed to fix nitrogen with Lotus japonicus. However, complementation analysis unexpectedly(More)
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate and has many biological functions in prokaryotic and eukaryotic organisms. To investigate polyP localization, we developed a novel technique using the affinity of the recombinant polyphosphate binding domain (PPBD) of Escherichia coli exopolyphosphatase to polyP. An epitope-tagged PPBD(More)
Phialocephala fortinii is a dark septate fungal endophyte that colonizes roots of many host species. Its effect on plant growth varies from being pathogenic to beneficial. The basic biology of this species has received little research, and thus the main objectives of this study were to determine cytological features of hyphae, including the nature of the(More)
In order to consolidate molecular genetic system in Lotus japonicus and to further access the biological diversity in Lotea, we introduce here Lotus burttii B-303 derived from West Pakistan as the third crossing partner of the Gifu ecotype (B-129-S9) for a genetic analysis. L. burttii is a relatively small and early flowering plant with non-shattering(More)