Katsuaki Tanabe

Learn More
Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to(More)
We report a high-Q design for a semiconductor-based two-dimensional zero-cell photonic crystal (PhC) nanocavity with a small mode volume. The optimization of displacements of hexagonal-lattice air holes in the Gamma-M direction, in addition to the Gamma-K direction, resulted in a cavity quality factor Q of 2.8 x 10(5) sustaining the small modal volume of(More)
Room temperature, continuous-wave lasing in a quantum dot photonic crystal nanocavity on a Si substrate has been demonstrated by optical pumping. The laser was an air-bridge structure of a two-dimensional photonic crystal GaAs slab with InAs quantum dots inside on a Si substrate fabricated through wafer bonding and layer transfer. This surface-emitting(More)
A direct-bonded GaAs/ InGaAs solar cell is demonstrated. The direct-bonded interconnect between subcells of this two-junction cell enables monolithic interconnection without threading dislocations and planar defects that typically arise during lattice-mismatched epitaxial heterostructure growth. The bonded interface is a metal-free n+GaAs/n+InP tunnel(More)
An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits(More)
Sulfide-passivated GaAs and InP wafers were directly bonded to explore the efficiency of sulfide passivation on the bonded interfacial properties. We find that the bonded GaAs/InP interfaces after sulfide passivation contain sulfur atoms and a decreased amount of oxide species relative to the pairs bonded after conventional acid treatment; however, the(More)
An InAs/GaAs quantum dot laser on a Si rib structure has been demonstrated. The double heterostructure laser structure grown on a GaAs substrate is layer-transferred onto a patterned Si substrate by GaAs/Si direct wafer bonding without oxide or metal mediation. This Fabry-Perot laser operates with current injection through the GaAs/Si rib interface and(More)
We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting(More)