Katsu Yamane

Learn More
This paper introduces an open architecture humanoid robotics platform (OpenHRP for short) on which various building blocks of humanoid robotics can be investigated. OpenHRP is a virtual humanoid robot platform with a compatible humanoid robot, and consists of a simulator of humanoid robots and motion control library for them which can also be applied to a(More)
This paper presents a computational technique for creating whole-body motions of human and animal characters without reference motion. Our work enables animators to generate a natural motion by dragging a link to an arbitrary position with any number of links pinned in the global frame, as well as other constraints such as desired joint angles and joint(More)
Even such simple tasks as placing a box on a shelf are difficult to animate, because the animator must carefully position the character to satisfy geometric and balance constraints while creating motion to perform the task with a natural-looking style. In this paper, we explore an approach for animating characters manipulating objects that combines the(More)
K e y W o r d s : Motion Generation, Human Figures, Physical Consistency, Dynamics, Motion Synthesis. 1 I n t r o d u c t i o n Generating motions of hmnan figures, including humanoid robots and hulnan characters in conllDuler allimations, is of greal, interest in both robotics and computer graphics (CG) fields. However, since human figures have completely(More)
This paper discusses the dynamics computation of structure-varying kinematic chains which imply mechanical link systems whose structure may change from open kinematic chain to closed one and vice versa. The proposed algorithm can handle and compute the dynamics and motions of any rigid link systems in a seamless manner without switching among algorithms.(More)
This paper presents a control framework for humanoid robots that uses all joints simultaneously to track motion capture data and maintain balance. The controller comprises two main components: a balance controller and a tracking controller. The balance controller uses a regulator designed for a simplified humanoid model to obtain the desired input to keep(More)
This paper presents a method for generating animations of non-humanoid characters from human motion capture data. Characters considered in this work have proportion and/or topology significantly different from humans, but are expected to convey expressions and emotions through body language that are understandable to human viewers. Keyframing is most(More)
This paper presents a stable penalty-based model for simulating frictional contacts between many complex objects. The major advantage of our model is that it solves the problems in implementing Coulomb's friction model for computer simulation: iterative computation and slip velocity threshold. We also introduce a robust method for computing the normal(More)
This paper presents a numerically robust algorithm for solving linear complementarity problems (LCPs), and applies it to simulation of frictional contacts of articulated rigid bodies each modeled as a general polygonal object. We first point out two problems of the popular pivot-based LCP solver called Lemke Algorithm and its extension with lexicographic(More)
Database of human motion has been widely used for recognizing human motion and synthesizing humanoid motions. In this paper, we propose a data structure for storing and extracting human motion data and demonstrate that the database can be applied to the recognition and motion synthesis problems in robotics. We develop an efficient method for building a(More)