Katrin Trautwein-Fritz

Learn More
Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic(More)
A variant of bovine pancreatic ribonuclease A has been prepared with seven amino acid substitutions (Q55K, N62K, A64T, Y76K, S80R, E111G, N113K). These substitutions recreate in RNase A the basic surface found in bovine seminal RNase, a homologue of pancreatic RNase that diverged some 35 million years ago. Substitution of a portion of this basic surface(More)
A variant of bovine pancreatic ribonuclease A has been prepared with seven amino acid substitutions (Q55K, N62K, A64T, Y76K, S80R, E111G, N113K). These substitutions recreate in RNase A the basic surface found in bovine seminal RNase, a homologue of pancreatic RNase that diverged some 35 million years ago. Substitution of a portion of this basic surface(More)
Paleomolecular biochemistry is a new field of science that seeks to understand how life emerged and developed in interaction with its geophysical surroundings. It is an experimental science, involving reconstruction of extinct biomolecules in the laboratory, studying their properties in the laboratory, and inferring details of their behavior and function in(More)
  • 1