Katrin L. Weber

Learn More
Massively parallel sequencing of DNA by pyrosequencing technology offers much higher throughput and lower cost than conventional Sanger sequencing. Although extensively used already for sequencing of genomes, relatively few applications of massively parallel pyrosequencing to transcriptome analysis have been reported. To test the ability of this technology(More)
Selective pressure exerted by a massive decline in atmospheric CO(2) levels 55 to 40 million years ago promoted the evolution of a novel, highly efficient mode of photosynthetic carbon assimilation known as C(4) photosynthesis. C(4) species have concurrently evolved multiple times in a broad range of plant families, and this multiple and parallel evolution(More)
C(4) photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression(More)
D-2-Hydroxyglutarate dehydrogenase (D-2HGDH) catalyzes the specific and efficient oxidation of D-2-hydroxyglutarate (D-2HG) to 2-oxoglutarate using FAD as a cofactor. In this work, we demonstrate that D-2HGDH localizes to plant mitochondria and that its expression increases gradually during developmental and dark-induced senescence in Arabidopsis thaliana,(More)
An inexpensive monophasic reagent has been developed for the extraction of total RNA from cells or tissues. The main ingredients of the reagent are Phenol, Isoamyl alcohol, Guanidinium isothiocyanate, and Beta-mercaptoethanol (PIG-B). The quality and yield of RNA obtained by this reagent is at par with that obtained by TRIzol, an expensive but widely used(More)
The establishment of kleptoplasty (retention of "stolen plastids") in the digestive tissue of the sacoglossan Elysia chlorotica Gould was investigated using transmission electron microscopy. Cellular processes occurring during the initial exposure to plastids were observed in laboratory raised animals ranging from 1-14 days post metamorphosis (dpm). These(More)
Preprotein import into chloroplasts depends on macromolecular machineries in the outer and inner chloroplast envelope membrane (TOC and TIC). It was suggested that both machineries are interconnected by components of the intermembrane space (IMS). That is, amongst others, Tic22, of which two closely related isoforms exist in Arabidopsis thaliana, namely(More)
The determination of unknown DNA sequences around a known locus has important applications in molecular genetics, specifically in genomic walking and genome mapping. Several PCR-based methods have been reported to address this issue, but they often involve multiple, time-consuming steps. We have previously described a technique known as restriction site PCR(More)
Little is known about bone and cartilage tumors at the molecular level; thus, the identification of genes associated with these tumors may be useful as markers and therapeutic targets. To address this issue and to test the hypothesis that abnormal expression of one or more growth factors in the transforming growth factor-beta superfamily is associated with(More)
Ferredoxin-NADP+ oxidoreductase (FNR), functioning in the last step of the photosynthetic electron transfer chain, exists both as a soluble protein in the chloroplast stroma and tightly attached to chloroplast membranes. Surface plasmon resonance assays showed that the two FNR isoforms, LFNR1 and LFNR2, are bound to the thylakoid membrane via the C-terminal(More)