Learn More
There have been several attempts to use the neuromagnetic response to the onset of a tonal sound (N100m) to study pitch processing in auditory cortex. Unfortunately, a large proportion of the N100m is simply a response to the onset of sound energy, independent of whether the sound produces a pitch. The current study describes a novel stimulus paradigm(More)
The localization of low-frequency sounds mainly relies on the processing of microsecond temporal disparities between the ears, since low frequencies produce little or no interaural energy differences. The overall auditory cortical response to low-frequency sounds is largely symmetrical between the two hemispheres, even when the sounds are lateralized.(More)
The aim of the current study was to measure the brain's response to auditory motion using electroencephalography (EEG) to gain insight into the mechanisms by which hemispheric lateralization for auditory spatial processing is established in the human brain. The onset of left- or rightward motion in an otherwise continuous sound was found to elicit a large(More)
Horizontal sound localization relies on the extraction of binaural acoustic cues by integration of the signals from the two ears at the level of the brainstem. The present experiment was aimed at detecting the sites of binaural integration in the human brainstem using functional magnetic resonance imaging and a binaural difference paradigm, in which the(More)
An objective melody task was used to determine the lower limit of melodic pitch (LLMP) for harmonic complex tones. The LLMP was defined operationally as the repetition rate below which listeners could no longer recognize that one of the notes in a four-note, chromatic melody had changed by a semitone. In the first experiment, the stimuli were broadband(More)
Attending to a visual stimulus feature, such as color or motion, enhances the processing of that feature in the visual cortex. Moreover, the processing of the attended object's other, unattended, features is also enhanced. Here, we used functional magnetic resonance imaging to show that attentional modulation in the auditory system may also exhibit such(More)
In humans, horizontal sound localization of low-frequency sounds is mainly based on interaural time differences (ITDs). Traditionally, it was assumed that ITDs are converted into a topographic (or rate-place) code, supported by an array of neurons with parametric tuning to ITDs within the behaviorally relevant range. Although this topographic model has been(More)
This paper is concerned with the lower limit of pitch for complex, harmonic sounds, like the notes produced by low-pitched musical instruments. The lower limit of pitch is investigated by measuring rate discrimination thresholds for harmonic tones filtered into 1.2-kHz-wide bands with a lower cutoff frequency, F(c), ranging from 0.2 to 6.4 kHz. When F(c) is(More)
An Auditory Ambiguity Test (AAT) was taken twice by nonmusicians, musical amateurs, and professional musicians. The AAT comprised different tone pairs, presented in both within-pair orders, in which overtone spectra rising in pitch were associated with missing fundamental frequencies (F0) falling in pitch, and vice versa. The F0 interval ranged from 2 to 9(More)
We report evidence for a context- and not stimulus-dependent functional asymmetry in the left and right human auditory midbrain, thalamus, and cortex in response to monaural sounds. Neural activity elicited by left- and right-ear stimulation was measured simultaneously in the cochlear nuclei, inferior colliculi (ICs), medial geniculate bodies (MGBs), and(More)