Katrin Kaldma

Learn More
Two tribal groups from southern India--the Chenchus and Koyas--were analyzed for variation in mitochondrial DNA (mtDNA), the Y chromosome, and one autosomal locus and were compared with six caste groups from different parts of India, as well as with western and central Asians. In mtDNA phylogenetic analyses, the Chenchus and Koyas coalesce at(More)
About a fifth of the human gene pool belongs largely either to Indo-European or Dravidic speaking people inhabiting the Indian peninsula. The 'Caucasoid share' in their gene pool is thought to be related predominantly to the Indo-European speakers. A commonly held hypothesis, albeit not the only one, suggests a massive Indo-Aryan invasion to India some(More)
Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized(More)
A maximum parsimony tree of 21 complete mitochondrial DNA (mtDNA) sequences belonging to haplogroup X and the survey of the haplogroup-associated polymorphisms in 13,589 mtDNAs from Eurasia and Africa revealed that haplogroup X is subdivided into two major branches, here defined as "X1" and "X2." The first is restricted to the populations of North and East(More)
Here we discuss how our understanding of the peopling of Europe by modern humans may be improved by results which can be obtained in the investigation of genetic lineages of populations living in Anatolia and the Trans-Caucasus: Turks, Armenians, Georgians and Ossetes (Fig. 25.1). These four populations occupy a geographic area commonly believed to have(More)
The topology of the network of western Eurasian mitochondrial DNA (mtDNA) lineage clusters in the context of their expansion and spread in this geographic area is analysed. Special attention is devoted to the inner nods of the reconstructed median network tree, ancestral to mtDNA lineage clusters H and V, to the Caucasus and TransCaucasus area populations(More)
Strategies to improve vaccine efficacy are still required, especially in the case of chronic infections, including human immunodeficiency virus (HIV). DNA vaccines have potential advantages over conventional vaccines; however, low immunological efficacy has been demonstrated in many experiments involving large animals and in clinical trials. To improve the(More)
Broad CTL response against HIV-1 is one factor that helps to control the viral replication. We have constructed a DNA vaccine that encodes a large artificial fusion protein (MultiHIV) and shown it to be immunogenic in mice, swine and macaques. Inbred mice revealed CTL response only against two epitopes due to limited MHC class I variability. To assess the(More)