Learn More
Exosomes emerge as central 3'-->5' RNA processing and degradation machineries in eukaryotes and archaea. We determined crystal structures of two 230 kDa nine subunit archaeal exosome isoforms. Both exosome isoforms contain a hexameric ring of RNase phosphorolytic (PH) domain subunits with a central chamber. Tungstate soaks identified three phosphorolytic(More)
The transcription repair coupling factor Mfd removes stalled RNA polymerase from DNA lesions and links transcription to UvrABC-dependent nucleotide excision repair in prokaryotes. We report the 2.1A crystal structure of the UvrA-binding N terminus (residues 1-333) of Escherichia coli Mfd (Mfd-N). Remarkably, Mfd-N reveals a fold that resembles the three(More)
The exosome, a large multisubunit complex with exoribonucleic activity, emerges as the central 3' RNA degradation and processing factor in eukaryotes and archaea. But how are the many RNA substrates of the exosome degraded in a processive, yet controlled manner? Recent functional and structural progress shows that the exosome is a macromolecular cage, where(More)
In acute myeloid leukemia (AML), two clusters of activating mutations are known in the FMS-like tyrosine kinase-3 (FLT3) gene: FLT3-internal tandem duplications (FLT3-ITDs) in the juxtamembrane (JM) domain in 20% to 25% of patients, and FLT3 point mutations in the tyrosine-kinase domain (FLT3-TKD) in 7% to 10% of patients, respectively. Here, we have(More)
FcalphaRI is the predominant receptor for IgA in the serum. Nevertheless, the interaction between the molecules that finally leads to an immune response is poorly understood. To investigate the structural requirements for IgA binding, the extracellular region of FcalphaRI was cloned and overexpressed in Escherichia coli. The resulting inclusion-body protein(More)
Pathogenic bacteria have developed complex and diverse virulence mechanisms that weaken or disable the host immune defense system. IdeS (IgG-degrading enzyme of Streptococcus pyogenes) is a secreted cysteine endopeptidase from the human pathogen S. pyogenes with an extraordinarily high degree of substrate specificity, catalyzing a single proteolytic(More)
  • 1