Katja Sabine Kroker

Learn More
Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in(More)
Conflicting findings are reported in the literature about the involvement of the mGlu5 receptor in hippocampal long-term potentiation (LTP), which might be a consequence of different sub-types of LTP induced by the investigators due to the specific experimental conditions used. A comparable controversy came up in the past concerning the influence of(More)
Donepezil is the current standard symptomatic treatment of mild-to-moderate Alzheimer's disease (AD) patients. It aims to compensate for the deficit in cholinergic neurotransmission by blocking acetylcholinesterase (AChE) and thus increases the concentration of extracellular acetylcholine. However, experience from clinical practice demonstrated that AChE(More)
As nicotinic acetylcholine receptor (nAChR) agonists directly address cholinergic neurotransmission with potential impact on glutamatergic function, they are considered as potential new symptomatic treatment options for Alzheimer's disease compared to the indirectly operating acetylcholinesterase inhibitors such as the current gold standard donepezil. In(More)
A major challenge in neuroscience is identifying the cellular and molecular processes underlying learning and memory formation. In the past decades, significant progress has been made in understanding cellular and synaptic mechanisms underlying hippocampal learning and memory using long-term potentiation (LTP) experiments in brain slices as a model system.(More)
The cyclic nucleotide cGMP is an important intracellular messenger for synaptic plasticity and memory function in rodents. Therefore, inhibition of cGMP degrading phosphodiesterases, like PDE9A, has gained interest as potential target for treatment of cognition deficits in indications like Alzheimer's disease (AD). In fact, PDE9A inhibition results in(More)
In Alzheimer's disease, substantial evidence indicates the causative role of soluble amyloid β (Aβ) aggregates. Although a variety of Aβ assemblies have been described, the debate about their individual relevance is still ongoing. One critical issue hampering this debate is the use of different methods for the characterization of endogenous and synthetic(More)
Tg2576 mice are widely used to study amyloid-dependent synaptic dysfunction related to Alzheimer's disease. However, conflicting data have been reported for these mice with regard to basal transmission as well as the in vitro correlate of memory, long-term potentiation (LTP). Some studies show clear impairments, whereas others report no deficiency. The(More)
Phosphodiesterase (PDE) inhibitors are currently considered promising therapeutic targets for treatment of cognitive impairment in diseases such as Schizophrenia and Alzheimer's disease. Inhibitors of PDE2A and PDE9A have emerged as potential candidates shown to improve synaptic plasticity and memory function in animals. However, the functional relevance of(More)
  • 1