Learn More
Due to growing production, carbon nanotubes (CNT) may soon be found in a broad range of products and thus in the environment. In this work, an algal growth test was developed to determine effects of pristine and oxidized CNT on the green algae Chlorella vulgaris and Pseudokirchneriella subcapitata. CNT suspensions were prepared in algal test medium and(More)
The role of reactive oxygen species (ROS) in copper (Cu) toxicity to two freshwater green algal species, Pseudokirchneriella subcapitata (Korshikov) Hindák and Chlorella vulgaris Beij., was assessed to gain a better mechanistic understanding of this toxicity. Cu-induced formation of ROS was investigated in the two algal species and linked to short-term(More)
Environmental estrogens have the potential to considerably affect the reproduction and development of aquatic vertebrates by interfering with the endocrine system. In addition to the potential risk of environmental estrogens, increasing water temperatures as a result of global warming have become a serious problem in many rivers and streams. To assess the(More)
Chemical heterogeneity in a lake may arise from spatially and temporally nonuniform inputs or from spatially nonuniform transformation rates within the water body. The potential for heterogeneity to persist at a given spatial scale then depends on the relative magnitudes of the hydraulic residence time, the timescale for mixing, and the timescale for(More)
Copper is known to pose a serious threat to aquatic organisms. However, the mechanisms of its toxicity still remain unclear. Cu is known to exert its toxicity partly due to the formation of reactive oxygen species (ROS). The purpose of this work was therefore to link the exposure to copper at pH 6 and 7 to cellular formation of ROS and effects like cell(More)
Black carbon (BC) is known to act as supersorbent for many organic contaminants. Its presence in surface waters at a level of a few mg/L, which may occur, e.g., after storm events in urban areas, might result in a reduced bioavailability of many contaminants and thus greatly impact their potential toxicity. Photosynthesis-inhibiting phenyl urea derivatives,(More)
Scientific publications and patents on nanomaterials (NM) used in plant protection or fertilizer products have exponentially increased since the millennium shift. While the United States and Germany have published the highest number of patents, Asian countries released most scientific articles. About 40% of all contributions deal with carbon-based NM,(More)
Carbon nanotubes (CNT) are more and more likely to be present in the environment, where they will associate with organic micropollutants due to strong sorption. The toxic effects of these CNT-micropollutant mixtures on aquatic organisms are poorly characterized. Here, we systematically quantified the effects of the herbicide diuron on the photosynthetic(More)
Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous(More)
Acute toxicity to fish hepatoma cell line PLHC-1 and to juvenile rainbow trout was examined for 18 plant protection products. The main objective was to explore whether hepatoma cells could be used to predict acute toxicity in fish taking into account the mode of toxic action and compound properties. Acute fish toxicity was determined using the OECD(More)