Learn More
The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological(More)
Depressive disorders are among the most prevalent neuropsychiatric dysfunctions worldwide, with high rates of resistance to antidepressant treatment. Genetic factors clearly contribute to the manifestation of depression as well as to the response to antidepressants. Transgenic mouse models appear as seminal tools to disentangle this complex disorder. Here,(More)
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously(More)
The now-banned anorectic molecule, dexfenfluramine, promotes serotonin release through a serotonin transporter-dependent mechanism, and it has been widely prescribed for the treatment of obesity. Previous studies have identified that 5-HT(2B) receptors have important roles in dexfenfluramine side effects, that is, pulmonary hypertension, plasma serotonin(More)
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we(More)
Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and(More)
Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop(More)
OBJECTIVE Left-ventricular hypertrophy and interstitial fibrosis are the main pathophysiological factors of heart failure with preserved ejection fraction. Blockade of the serotonin 5-HT2B receptor (5-HT2BR) has been shown to reduce cardiac hypertrophy, oxidative stress, and extracellular cell matrix activation. In this study, we evaluated the effects of(More)
  • 1