Learn More
BACKGROUND & AIMS Evidence is accumulating that ethanol and its oxidative metabolite, acetaldehyde, can disrupt intestinal epithelial integrity, an important factor contributing to ethanol-induced liver injury. However, ethanol can also be metabolized non-oxidatively generating phosphatidylethanol and fatty acid ethyl esters (FAEEs). This study aims to(More)
PURPOSE The production of functional retinal pigment epithelium (RPE) cells from human embryonic (hESCs) and human induced pluripotent stem cells (hiPSCs) in defined and xeno-free conditions is highly desirable, especially for their use in cell therapy for retinal diseases. In addition, differentiated RPE cells provide an individualized disease model and(More)
PURPOSE Aquaporins (AQPs), a family of transmembrane water channel proteins, are essential for allowing passive water transport through retinal pigmented epithelial (RPE) cells. Even though human native RPE cells and immortalized human RPEs have been shown to express AQPs, the expression of AQPs during the differentiation in stem cell-derived RPE remains to(More)
Retinal pigment epithelial (RPE) cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of(More)
BACKGROUND Intestinal barrier dysfunction and translocation of endotoxins are involved in the pathogenesis of alcoholic liver disease. Exposure to ethanol and its metabolite, acetaldehyde at relatively high concentrations have been shown to disrupt intestinal epithelial tight junctions in the conventional two dimensional cell culture models. The present(More)
The barrier properties of epithelium are conventionally defined by transepithelial resistance (TER). TER provides information about the tightness of the epithelium. Electrical impedance spectroscopy (EIS) provides additional information regarding cell membrane properties, such as changes in electric capacitance and possible parallel or serial pathways that(More)
Bone morphogenetic protein 4 (BMP4) belongs to the transforming growth factor β (TGF-β) family of proteins. BMPs regulate cell proliferation, differentiation and motility, and have also been reported to be involved in cancer pathogenesis. We have previously shown that BMP4 reduces breast cancer cell proliferation through G1 cell cycle arrest and(More)
BACKGROUND The cytokines TNF (TNFSF2) and IFNγ are important mediators of inflammatory bowel diseases and contribute to enhanced intestinal epithelial permeability by stimulating apoptosis and/or disrupting tight junctions. Apoptosis and tight junctions are also important for epithelial tissue morphogenesis, but the effect of TNF and IFNγ on the process of(More)
BACKGROUND The TGFbeta1-induced signal transduction processes involved in growth and differentiation are only partly known. The three-dimensional epithelial differentiation model, in which T84 epithelial cells are induced to differentiate either with TGFbeta1 or IMR-90 mesenchymal cell-secreted soluble factors, is previously shown to model epithelial cell(More)
Ca2+ is a second messenger controlling vital cellular processes, including cell maturation. Changes in Ca2+ signaling during maturation of human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) have not been assessed previously. The aim of this study was to investigate maturation-dependent changes in transient intracellular Ca2+(More)