Learn More
Do biological motors move with regular steps? To address this question, we constructed instrumentation with the spatial and temporal sensitivity to resolve movement on a molecular scale. We deposited silica beads carrying single molecules of the motor protein kinesin on microtubules using optical tweezers and analysed their motion under controlled loads by(More)
Packed erythrocytes are ideally suited as a model system for the study of water diffusion in biological tissue, because cell size, membrane permeability, and extracellular volume fraction can be varied independently. We used a pulsed-field-gradient spin echo NMR technique to measure the time-dependent diffusion coefficient D(t) in packed erythrocytes. The(More)
We studied fluctuations in the displacement of silica beads driven by single molecules of the motor protein kinesin, moving under low mechanical loads at saturating ATP concentrations. The variance in position was significantly smaller than expected for the case of stepwise movement along a regular lattice of positions with exponentially distributed(More)
The force produced by a single molecule of Escherichia coli RNA polymerase during transcription was measured optically. Polymerase immobilized on a surface was used to transcribe a DNA template attached to a polystyrene bead 0.5 micrometer in diameter. The bead position was measured by interferometry while a force opposing translocation of the polymerase(More)
Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to(More)
The development of in vitro motility assays for motor proteins has been accompanied by a parallel development of advanced optical instrumentation capable of recording motion at the molecular level. Devices now exist that can record displacements to better than 0.1 nm at bandwidths in excess of 10 kHz, and that can place controlled forces up to many pN on(More)
We studied the structure and elasticity of membrane skeletons from human red blood cells (RBCs) during and after extraction of RBC ghosts with nonionic detergent. Optical tweezers were used to suspend individual cells inside a flow chamber, away from all surfaces; this procedure allowed complete exchange of medium while the low-contrast protein network of(More)