Kathy L. McGraw

Learn More
Chronic lymphoproliferative disorders of natural killer cells (CLPD-NKs) and T-cell large granular lymphocytic leukemias (T-LGLs) are clonal lymphoproliferations arising from either natural killer cells or cytotoxic T lymphocytes (CTLs). We have investigated for distribution and functional significance of mutations in 50 CLPD-NKs and 120 T-LGL patients by(More)
Allelic deletion of the RPS14 gene is a key effector of the hypoplastic anemia in patients with myelodysplastic syndrome (MDS) and chromosome 5q deletion (del(5q)). Disruption of ribosome integrity liberates free ribosomal proteins to bind to and trigger degradation of mouse double minute 2 protein (MDM2), with consequent p53 transactivation. Herein we show(More)
The myelodysplastic syndromes (MDS) display both haematological and biological heterogeneity with variable leukaemia potential. MicroRNAs play an important role in tumour suppression and the regulation of self-renewal and differentiation of haematopoietic progenitors. Using a microarray platform, we evaluated microRNA expression from 44 patients with MDS(More)
Loss of heterozygosity affecting chromosome 7q is common in acute myeloid leukemia and myelodysplastic syndromes, pointing toward the essential role of this region in disease phenotype and clonal evolution. The higher resolution offered by recently developed genomic platforms may be used to establish more precise clinical correlations and identify specific(More)
Stabilization of p53 in erythroid precursors in response to nucleosomal stress underlies the hypoplastic anemia in myelodysplastic syndromes (MDS) with chromosome 5q deletion [del(5q)]. We investigated whether cenersen, a clinically active 20-mer antisense oligonucleotide complementary to TP53 exon10, could suppress p53 expression and restore erythropoiesis(More)
Granulocyte-macrophage-colony-stimulating factor (GM-CSF) hypersensitivity is a hallmark of juvenile myelomonocytic leukemia (JMML) but has not been systematically shown in the related human disease chronic myelomonocytic leukemia (CMML). We find that primary CMML samples demonstrate GM-CSF-dependent hypersensitivity by hematopoietic colony formation assays(More)
Although next-generation sequencing has allowed for the detection of somatic mutations in myelodysplastic syndromes (MDS), the clinical relevance of variant allele frequency (VAF) for the majority of mutations is unknown. We profiled TP53 and 20 additional genes in our training set of 219 patients with MDS or secondary acute myeloid leukemia with findings(More)
Aberrant JAK2 signalling plays an important role in the aetiology of myeloproliferative neoplasms (MPNs). JAK2 inhibitors, however, do not readily eliminate neoplastic MPN cells and thus do not induce patient remission. Further understanding JAK2 signalling in MPNs may uncover novel avenues for therapeutic intervention. Recent work has suggested a potential(More)
Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft(More)
In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability(More)